1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#![cfg(feature = "num-complex")]

//!  Conversions to and from [num-complex](https://docs.rs/num-complex)’
//! [`Complex`]`<`[`f32`]`>` and [`Complex`]`<`[`f64`]`>`.
//!
//! num-complex’ [`Complex`] supports more operations than PyO3's [`PyComplex`]
//! and can be used with the rest of the Rust ecosystem.
//!
//! # Setup
//!
//! To use this feature, add this to your **`Cargo.toml`**:
//!
//! ```toml
//! [dependencies]
//! # change * to the latest versions
//! num-complex = "*"
#![doc = concat!("pyo3 = { version = \"", env!("CARGO_PKG_VERSION"),  "\", features = [\"num-complex\"] }")]
//! ```
//!
//! Note that you must use compatible versions of num-complex and PyO3.
//! The required num-complex version may vary based on the version of PyO3.
//!
//! # Examples
//!
//! Using [num-complex](https://docs.rs/num-complex) and [nalgebra](https://docs.rs/nalgebra)
//! to create a pyfunction that calculates the eigenvalues of a 2x2 matrix.
//! ```ignore
//! # // not tested because nalgebra isn't supported on msrv
//! # // please file an issue if it breaks!
//! use nalgebra::base::{dimension::Const, Matrix};
//! use num_complex::Complex;
//! use pyo3::prelude::*;
//!
//! type T = Complex<f64>;
//!
//! #[pyfunction]
//! fn get_eigenvalues(m11: T, m12: T, m21: T, m22: T) -> Vec<T> {
//!     let mat = Matrix::<T, Const<2>, Const<2>, _>::new(m11, m12, m21, m22);
//!
//!     match mat.eigenvalues() {
//!         Some(e) => e.data.as_slice().to_vec(),
//!         None => vec![],
//!     }
//! }
//!
//! #[pymodule]
//! fn my_module(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
//!     m.add_function(wrap_pyfunction!(get_eigenvalues, m)?)?;
//!     Ok(())
//! }
//! # // test
//! # use assert_approx_eq::assert_approx_eq;
//! # use nalgebra::ComplexField;
//! # use pyo3::types::PyComplex;
//! #
//! # fn main() -> PyResult<()> {
//! #     Python::with_gil(|py| -> PyResult<()> {
//! #         let module = PyModule::new_bound(py, "my_module")?;
//! #
//! #         module.add_function(&wrap_pyfunction!(get_eigenvalues, module.as_gil_ref())?.as_borrowed())?;
//! #
//! #         let m11 = PyComplex::from_doubles_bound(py, 0_f64, -1_f64);
//! #         let m12 = PyComplex::from_doubles_bound(py, 1_f64, 0_f64);
//! #         let m21 = PyComplex::from_doubles_bound(py, 2_f64, -1_f64);
//! #         let m22 = PyComplex::from_doubles_bound(py, -1_f64, 0_f64);
//! #
//! #         let result = module
//! #             .getattr("get_eigenvalues")?
//! #             .call1((m11, m12, m21, m22))?;
//! #         println!("eigenvalues: {:?}", result);
//! #
//! #         let result = result.extract::<Vec<T>>()?;
//! #         let e0 = result[0];
//! #         let e1 = result[1];
//! #
//! #         assert_approx_eq!(e0, Complex::new(1_f64, -1_f64));
//! #         assert_approx_eq!(e1, Complex::new(-2_f64, 0_f64));
//! #
//! #         Ok(())
//! #     })
//! # }
//! ```
//!
//! Python code:
//! ```python
//! from my_module import get_eigenvalues
//!
//! m11 = complex(0,-1)
//! m12 = complex(1,0)
//! m21 = complex(2,-1)
//! m22 = complex(-1,0)
//!
//! result = get_eigenvalues(m11,m12,m21,m22)
//! assert result == [complex(1,-1), complex(-2,0)]
//! ```
use crate::{
    ffi,
    ffi_ptr_ext::FfiPtrExt,
    types::{any::PyAnyMethods, PyComplex},
    Bound, FromPyObject, PyAny, PyErr, PyObject, PyResult, Python, ToPyObject,
};
use num_complex::Complex;
use std::os::raw::c_double;

impl PyComplex {
    /// Deprecated form of [`PyComplex::from_complex_bound`]
    #[cfg_attr(
        not(feature = "gil-refs"),
        deprecated(
            since = "0.21.0",
            note = "`PyComplex::from_complex` will be replaced by `PyComplex::from_complex_bound` in a future PyO3 version"
        )
    )]
    pub fn from_complex<F: Into<c_double>>(py: Python<'_>, complex: Complex<F>) -> &PyComplex {
        Self::from_complex_bound(py, complex).into_gil_ref()
    }

    /// Creates a new Python `PyComplex` object from `num_complex`'s [`Complex`].
    pub fn from_complex_bound<F: Into<c_double>>(
        py: Python<'_>,
        complex: Complex<F>,
    ) -> Bound<'_, PyComplex> {
        unsafe {
            ffi::PyComplex_FromDoubles(complex.re.into(), complex.im.into())
                .assume_owned(py)
                .downcast_into_unchecked()
        }
    }
}

macro_rules! complex_conversion {
    ($float: ty) => {
        #[cfg_attr(docsrs, doc(cfg(feature = "num-complex")))]
        impl ToPyObject for Complex<$float> {
            #[inline]
            fn to_object(&self, py: Python<'_>) -> PyObject {
                crate::IntoPy::<PyObject>::into_py(self.to_owned(), py)
            }
        }

        #[cfg_attr(docsrs, doc(cfg(feature = "num-complex")))]
        impl crate::IntoPy<PyObject> for Complex<$float> {
            fn into_py(self, py: Python<'_>) -> PyObject {
                unsafe {
                    let raw_obj =
                        ffi::PyComplex_FromDoubles(self.re as c_double, self.im as c_double);
                    PyObject::from_owned_ptr(py, raw_obj)
                }
            }
        }

        #[cfg_attr(docsrs, doc(cfg(feature = "num-complex")))]
        impl FromPyObject<'_> for Complex<$float> {
            fn extract_bound(obj: &Bound<'_, PyAny>) -> PyResult<Complex<$float>> {
                #[cfg(not(any(Py_LIMITED_API, PyPy)))]
                unsafe {
                    let val = ffi::PyComplex_AsCComplex(obj.as_ptr());
                    if val.real == -1.0 {
                        if let Some(err) = PyErr::take(obj.py()) {
                            return Err(err);
                        }
                    }
                    Ok(Complex::new(val.real as $float, val.imag as $float))
                }

                #[cfg(any(Py_LIMITED_API, PyPy))]
                unsafe {
                    let complex;
                    let obj = if obj.is_instance_of::<PyComplex>() {
                        obj
                    } else if let Some(method) =
                        obj.lookup_special(crate::intern!(obj.py(), "__complex__"))?
                    {
                        complex = method.call0()?;
                        &complex
                    } else {
                        // `obj` might still implement `__float__` or `__index__`, which will be
                        // handled by `PyComplex_{Real,Imag}AsDouble`, including propagating any
                        // errors if those methods don't exist / raise exceptions.
                        obj
                    };
                    let ptr = obj.as_ptr();
                    let real = ffi::PyComplex_RealAsDouble(ptr);
                    if real == -1.0 {
                        if let Some(err) = PyErr::take(obj.py()) {
                            return Err(err);
                        }
                    }
                    let imag = ffi::PyComplex_ImagAsDouble(ptr);
                    Ok(Complex::new(real as $float, imag as $float))
                }
            }
        }
    };
}
complex_conversion!(f32);
complex_conversion!(f64);

#[cfg(test)]
mod tests {
    use super::*;
    use crate::types::{complex::PyComplexMethods, PyModule};

    #[test]
    fn from_complex() {
        Python::with_gil(|py| {
            let complex = Complex::new(3.0, 1.2);
            let py_c = PyComplex::from_complex_bound(py, complex);
            assert_eq!(py_c.real(), 3.0);
            assert_eq!(py_c.imag(), 1.2);
        });
    }
    #[test]
    fn to_from_complex() {
        Python::with_gil(|py| {
            let val = Complex::new(3.0, 1.2);
            let obj = val.to_object(py);
            assert_eq!(obj.extract::<Complex<f64>>(py).unwrap(), val);
        });
    }
    #[test]
    fn from_complex_err() {
        Python::with_gil(|py| {
            let obj = vec![1].to_object(py);
            assert!(obj.extract::<Complex<f64>>(py).is_err());
        });
    }
    #[test]
    fn from_python_magic() {
        Python::with_gil(|py| {
            let module = PyModule::from_code_bound(
                py,
                r#"
class A:
    def __complex__(self): return 3.0+1.2j
class B:
    def __float__(self): return 3.0
class C:
    def __index__(self): return 3
                "#,
                "test.py",
                "test",
            )
            .unwrap();
            let from_complex = module.getattr("A").unwrap().call0().unwrap();
            assert_eq!(
                from_complex.extract::<Complex<f64>>().unwrap(),
                Complex::new(3.0, 1.2)
            );
            let from_float = module.getattr("B").unwrap().call0().unwrap();
            assert_eq!(
                from_float.extract::<Complex<f64>>().unwrap(),
                Complex::new(3.0, 0.0)
            );
            // Before Python 3.8, `__index__` wasn't tried by `float`/`complex`.
            #[cfg(Py_3_8)]
            {
                let from_index = module.getattr("C").unwrap().call0().unwrap();
                assert_eq!(
                    from_index.extract::<Complex<f64>>().unwrap(),
                    Complex::new(3.0, 0.0)
                );
            }
        })
    }
    #[test]
    fn from_python_inherited_magic() {
        Python::with_gil(|py| {
            let module = PyModule::from_code_bound(
                py,
                r#"
class First: pass
class ComplexMixin:
    def __complex__(self): return 3.0+1.2j
class FloatMixin:
    def __float__(self): return 3.0
class IndexMixin:
    def __index__(self): return 3
class A(First, ComplexMixin): pass
class B(First, FloatMixin): pass
class C(First, IndexMixin): pass
                "#,
                "test.py",
                "test",
            )
            .unwrap();
            let from_complex = module.getattr("A").unwrap().call0().unwrap();
            assert_eq!(
                from_complex.extract::<Complex<f64>>().unwrap(),
                Complex::new(3.0, 1.2)
            );
            let from_float = module.getattr("B").unwrap().call0().unwrap();
            assert_eq!(
                from_float.extract::<Complex<f64>>().unwrap(),
                Complex::new(3.0, 0.0)
            );
            #[cfg(Py_3_8)]
            {
                let from_index = module.getattr("C").unwrap().call0().unwrap();
                assert_eq!(
                    from_index.extract::<Complex<f64>>().unwrap(),
                    Complex::new(3.0, 0.0)
                );
            }
        })
    }
    #[test]
    fn from_python_noncallable_descriptor_magic() {
        // Functions and lambdas implement the descriptor protocol in a way that makes
        // `type(inst).attr(inst)` equivalent to `inst.attr()` for methods, but this isn't the only
        // way the descriptor protocol might be implemented.
        Python::with_gil(|py| {
            let module = PyModule::from_code_bound(
                py,
                r#"
class A:
    @property
    def __complex__(self):
        return lambda: 3.0+1.2j
                "#,
                "test.py",
                "test",
            )
            .unwrap();
            let obj = module.getattr("A").unwrap().call0().unwrap();
            assert_eq!(
                obj.extract::<Complex<f64>>().unwrap(),
                Complex::new(3.0, 1.2)
            );
        })
    }
    #[test]
    fn from_python_nondescriptor_magic() {
        // Magic methods don't need to implement the descriptor protocol, if they're callable.
        Python::with_gil(|py| {
            let module = PyModule::from_code_bound(
                py,
                r#"
class MyComplex:
    def __call__(self): return 3.0+1.2j
class A:
    __complex__ = MyComplex()
                "#,
                "test.py",
                "test",
            )
            .unwrap();
            let obj = module.getattr("A").unwrap().call0().unwrap();
            assert_eq!(
                obj.extract::<Complex<f64>>().unwrap(),
                Complex::new(3.0, 1.2)
            );
        })
    }
}