pyo3/
marker.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
//! Fundamental properties of objects tied to the Python interpreter.
//!
//! The Python interpreter is not threadsafe. To protect the Python interpreter in multithreaded
//! scenarios there is a global lock, the *global interpreter lock* (hereafter referred to as *GIL*)
//! that must be held to safely interact with Python objects. This is why in PyO3 when you acquire
//! the GIL you get a [`Python`] marker token that carries the *lifetime* of holding the GIL and all
//! borrowed references to Python objects carry this lifetime as well. This will statically ensure
//! that you can never use Python objects after dropping the lock - if you mess this up it will be
//! caught at compile time and your program will fail to compile.
//!
//! It also supports this pattern that many extension modules employ:
//! - Drop the GIL, so that other Python threads can acquire it and make progress themselves
//! - Do something independently of the Python interpreter, like IO, a long running calculation or
//!   awaiting a future
//! - Once that is done, reacquire the GIL
//!
//! That API is provided by [`Python::allow_threads`] and enforced via the [`Ungil`] bound on the
//! closure and the return type. This is done by relying on the [`Send`] auto trait. `Ungil` is
//! defined as the following:
//!
//! ```rust
//! # #![allow(dead_code)]
//! pub unsafe trait Ungil {}
//!
//! unsafe impl<T: Send> Ungil for T {}
//! ```
//!
//! We piggy-back off the `Send` auto trait because it is not possible to implement custom auto
//! traits on stable Rust. This is the solution which enables it for as many types as possible while
//! making the API usable.
//!
//! In practice this API works quite well, but it comes with some drawbacks:
//!
//! ## Drawbacks
//!
//! There is no reason to prevent `!Send` types like [`Rc`] from crossing the closure. After all,
//! [`Python::allow_threads`] just lets other Python threads run - it does not itself launch a new
//! thread.
//!
//! ```rust, compile_fail
//! # #[cfg(feature = "nightly")]
//! # compile_error!("this actually works on nightly")
//! use pyo3::prelude::*;
//! use std::rc::Rc;
//!
//! fn main() {
//!     Python::with_gil(|py| {
//!         let rc = Rc::new(5);
//!
//!         py.allow_threads(|| {
//!             // This would actually be fine...
//!             println!("{:?}", *rc);
//!         });
//!     });
//! }
//! ```
//!
//! Because we are using `Send` for something it's not quite meant for, other code that
//! (correctly) upholds the invariants of [`Send`] can cause problems.
//!
//! [`SendWrapper`] is one of those. Per its documentation:
//!
//! > A wrapper which allows you to move around non-Send-types between threads, as long as you
//! > access the contained value only from within the original thread and make sure that it is
//! > dropped from within the original thread.
//!
//! This will "work" to smuggle Python references across the closure, because we're not actually
//! doing anything with threads:
//!
//! ```rust, no_run
//! use pyo3::prelude::*;
//! use pyo3::types::PyString;
//! use send_wrapper::SendWrapper;
//!
//! Python::with_gil(|py| {
//!     let string = PyString::new(py, "foo");
//!
//!     let wrapped = SendWrapper::new(string);
//!
//!     py.allow_threads(|| {
//! # #[cfg(not(feature = "nightly"))]
//! # {
//!         // 💥 Unsound! 💥
//!         let smuggled: &Bound<'_, PyString> = &*wrapped;
//!         println!("{:?}", smuggled);
//! # }
//!     });
//! });
//! ```
//!
//! For now the answer to that is "don't do that".
//!
//! # A proper implementation using an auto trait
//!
//! However on nightly Rust and when PyO3's `nightly` feature is
//! enabled, `Ungil` is defined as the following:
//!
//! ```rust
//! # #[cfg(any())]
//! # {
//! #![feature(auto_traits, negative_impls)]
//!
//! pub unsafe auto trait Ungil {}
//!
//! // It is unimplemented for the `Python` struct and Python objects.
//! impl !Ungil for Python<'_> {}
//! impl !Ungil for ffi::PyObject {}
//!
//! // `Py` wraps it in  a safe api, so this is OK
//! unsafe impl<T> Ungil for Py<T> {}
//! # }
//! ```
//!
//! With this feature enabled, the above two examples will start working and not working, respectively.
//!
//! [`SendWrapper`]: https://docs.rs/send_wrapper/latest/send_wrapper/struct.SendWrapper.html
//! [`Rc`]: std::rc::Rc
//! [`Py`]: crate::Py
use crate::conversion::IntoPyObject;
#[cfg(any(doc, not(Py_3_10)))]
use crate::err::PyErr;
use crate::err::{self, PyResult};
use crate::ffi_ptr_ext::FfiPtrExt;
use crate::gil::{GILGuard, SuspendGIL};
use crate::impl_::not_send::NotSend;
use crate::py_result_ext::PyResultExt;
use crate::types::any::PyAnyMethods;
use crate::types::{
    PyAny, PyDict, PyEllipsis, PyModule, PyNone, PyNotImplemented, PyString, PyType,
};
use crate::version::PythonVersionInfo;
use crate::{ffi, Bound, IntoPy, Py, PyObject, PyTypeInfo};
use std::ffi::{CStr, CString};
use std::marker::PhantomData;
use std::os::raw::c_int;

/// Types that are safe to access while the GIL is not held.
///
/// # Safety
///
/// The type must not carry borrowed Python references or, if it does, not allow access to them if
/// the GIL is not held.
///
/// See the [module-level documentation](self) for more information.
///
/// # Examples
///
/// This tracking is currently imprecise as it relies on the [`Send`] auto trait on stable Rust.
/// For example, an `Rc` smart pointer should be usable without the GIL, but we currently prevent that:
///
/// ```compile_fail
/// # use pyo3::prelude::*;
/// use std::rc::Rc;
///
/// Python::with_gil(|py| {
///     let rc = Rc::new(42);
///
///     py.allow_threads(|| {
///         println!("{:?}", rc);
///     });
/// });
/// ```
///
/// This also implies that the interplay between `with_gil` and `allow_threads` is unsound, for example
/// one can circumvent this protection using the [`send_wrapper`](https://docs.rs/send_wrapper/) crate:
///
/// ```no_run
/// # use pyo3::prelude::*;
/// # use pyo3::types::PyString;
/// use send_wrapper::SendWrapper;
///
/// Python::with_gil(|py| {
///     let string = PyString::new(py, "foo");
///
///     let wrapped = SendWrapper::new(string);
///
///     py.allow_threads(|| {
///         let sneaky: &Bound<'_, PyString> = &*wrapped;
///
///         println!("{:?}", sneaky);
///     });
/// });
/// ```
///
/// Fixing this loophole on stable Rust has significant ergonomic issues, but it is fixed when using
/// nightly Rust and the `nightly` feature, c.f. [#2141](https://github.com/PyO3/pyo3/issues/2141).
#[cfg_attr(docsrs, doc(cfg(all())))] // Hide the cfg flag
#[cfg(not(feature = "nightly"))]
pub unsafe trait Ungil {}

#[cfg_attr(docsrs, doc(cfg(all())))] // Hide the cfg flag
#[cfg(not(feature = "nightly"))]
unsafe impl<T: Send> Ungil for T {}

#[cfg(feature = "nightly")]
mod nightly {
    macro_rules! define {
        ($($tt:tt)*) => { $($tt)* }
    }

    define! {
        /// Types that are safe to access while the GIL is not held.
        ///
        /// # Safety
        ///
        /// The type must not carry borrowed Python references or, if it does, not allow access to them if
        /// the GIL is not held.
        ///
        /// See the [module-level documentation](self) for more information.
        ///
        /// # Examples
        ///
        /// Types which are `Ungil` cannot be used in contexts where the GIL was released, e.g.
        ///
        /// ```compile_fail
        /// # use pyo3::prelude::*;
        /// # use pyo3::types::PyString;
        /// Python::with_gil(|py| {
        ///     let string = PyString::new_bound(py, "foo");
        ///
        ///     py.allow_threads(|| {
        ///         println!("{:?}", string);
        ///     });
        /// });
        /// ```
        ///
        /// This applies to the GIL token `Python` itself as well, e.g.
        ///
        /// ```compile_fail
        /// # use pyo3::prelude::*;
        /// Python::with_gil(|py| {
        ///     py.allow_threads(|| {
        ///         drop(py);
        ///     });
        /// });
        /// ```
        ///
        /// On nightly Rust, this is not based on the [`Send`] auto trait and hence we are able
        /// to prevent incorrectly circumventing it using e.g. the [`send_wrapper`](https://docs.rs/send_wrapper/) crate:
        ///
        /// ```compile_fail
        /// # use pyo3::prelude::*;
        /// # use pyo3::types::PyString;
        /// use send_wrapper::SendWrapper;
        ///
        /// Python::with_gil(|py| {
        ///     let string = PyString::new_bound(py, "foo");
        ///
        ///     let wrapped = SendWrapper::new(string);
        ///
        ///     py.allow_threads(|| {
        ///         let sneaky: &PyString = *wrapped;
        ///
        ///         println!("{:?}", sneaky);
        ///     });
        /// });
        /// ```
        ///
        /// This also enables using non-[`Send`] types in `allow_threads`,
        /// at least if they are not also bound to the GIL:
        ///
        /// ```rust
        /// # use pyo3::prelude::*;
        /// use std::rc::Rc;
        ///
        /// Python::with_gil(|py| {
        ///     let rc = Rc::new(42);
        ///
        ///     py.allow_threads(|| {
        ///         println!("{:?}", rc);
        ///     });
        /// });
        /// ```
        pub unsafe auto trait Ungil {}
    }

    impl !Ungil for crate::Python<'_> {}

    // This means that PyString, PyList, etc all inherit !Ungil from  this.
    impl !Ungil for crate::PyAny {}

    impl<T> !Ungil for crate::PyRef<'_, T> {}
    impl<T> !Ungil for crate::PyRefMut<'_, T> {}

    // FFI pointees
    impl !Ungil for crate::ffi::PyObject {}
    impl !Ungil for crate::ffi::PyLongObject {}

    impl !Ungil for crate::ffi::PyThreadState {}
    impl !Ungil for crate::ffi::PyInterpreterState {}
    impl !Ungil for crate::ffi::PyWeakReference {}
    impl !Ungil for crate::ffi::PyFrameObject {}
    impl !Ungil for crate::ffi::PyCodeObject {}
    #[cfg(not(Py_LIMITED_API))]
    impl !Ungil for crate::ffi::PyDictKeysObject {}
    #[cfg(not(any(Py_LIMITED_API, Py_3_10)))]
    impl !Ungil for crate::ffi::PyArena {}
}

#[cfg(feature = "nightly")]
pub use nightly::Ungil;

/// A marker token that represents holding the GIL.
///
/// It serves three main purposes:
/// - It provides a global API for the Python interpreter, such as [`Python::eval_bound`].
/// - It can be passed to functions that require a proof of holding the GIL, such as
///   [`Py::clone_ref`].
/// - Its lifetime represents the scope of holding the GIL which can be used to create Rust
///   references that are bound to it, such as [`Bound<'py, PyAny>`].
///
/// Note that there are some caveats to using it that you might need to be aware of. See the
/// [Deadlocks](#deadlocks) and [Releasing and freeing memory](#releasing-and-freeing-memory)
/// paragraphs for more information about that.
///
/// # Obtaining a Python token
///
/// The following are the recommended ways to obtain a [`Python<'py>`] token, in order of preference:
/// - If you already have something with a lifetime bound to the GIL, such as [`Bound<'py, PyAny>`], you can
///   use its `.py()` method to get a token.
/// - In a function or method annotated with [`#[pyfunction]`](crate::pyfunction) or [`#[pymethods]`](crate::pymethods) you can declare it
///   as a parameter, and PyO3 will pass in the token when Python code calls it.
/// - When you need to acquire the GIL yourself, such as when calling Python code from Rust, you
///   should call [`Python::with_gil`] to do that and pass your code as a closure to it.
///
/// The first two options are zero-cost; [`Python::with_gil`] requires runtime checking and may need to block
/// to acquire the GIL.
///
/// # Deadlocks
///
/// Note that the GIL can be temporarily released by the Python interpreter during a function call
/// (e.g. importing a module). In general, you don't need to worry about this because the GIL is
/// reacquired before returning to the Rust code:
///
/// ```text
/// `Python` exists   |=====================================|
/// GIL actually held |==========|         |================|
/// Rust code running |=======|                |==|  |======|
/// ```
///
/// This behaviour can cause deadlocks when trying to lock a Rust mutex while holding the GIL:
///
///  * Thread 1 acquires the GIL
///  * Thread 1 locks a mutex
///  * Thread 1 makes a call into the Python interpreter which releases the GIL
///  * Thread 2 acquires the GIL
///  * Thread 2 tries to locks the mutex, blocks
///  * Thread 1's Python interpreter call blocks trying to reacquire the GIL held by thread 2
///
/// To avoid deadlocking, you should release the GIL before trying to lock a mutex or `await`ing in
/// asynchronous code, e.g. with [`Python::allow_threads`].
///
/// # Releasing and freeing memory
///
/// The [`Python<'py>`] type can be used to create references to variables owned by the Python
/// interpreter, using functions such as [`Python::eval_bound`] and [`PyModule::import`].
#[derive(Copy, Clone)]
pub struct Python<'py>(PhantomData<(&'py GILGuard, NotSend)>);

impl Python<'_> {
    /// Acquires the global interpreter lock, allowing access to the Python interpreter. The
    /// provided closure `F` will be executed with the acquired `Python` marker token.
    ///
    /// If implementing [`#[pymethods]`](crate::pymethods) or [`#[pyfunction]`](crate::pyfunction),
    /// declare `py: Python` as an argument. PyO3 will pass in the token to grant access to the GIL
    /// context in which the function is running, avoiding the need to call `with_gil`.
    ///
    /// If the [`auto-initialize`] feature is enabled and the Python runtime is not already
    /// initialized, this function will initialize it. See
    #[cfg_attr(
        not(any(PyPy, GraalPy)),
        doc = "[`prepare_freethreaded_python`](crate::prepare_freethreaded_python)"
    )]
    #[cfg_attr(PyPy, doc = "`prepare_freethreaded_python`")]
    /// for details.
    ///
    /// If the current thread does not yet have a Python "thread state" associated with it,
    /// a new one will be automatically created before `F` is executed and destroyed after `F`
    /// completes.
    ///
    /// # Panics
    ///
    /// - If the [`auto-initialize`] feature is not enabled and the Python interpreter is not
    ///   initialized.
    ///
    /// # Examples
    ///
    /// ```
    /// use pyo3::prelude::*;
    /// use pyo3::ffi::c_str;
    ///
    /// # fn main() -> PyResult<()> {
    /// Python::with_gil(|py| -> PyResult<()> {
    ///     let x: i32 = py.eval(c_str!("5"), None, None)?.extract()?;
    ///     assert_eq!(x, 5);
    ///     Ok(())
    /// })
    /// # }
    /// ```
    ///
    /// [`auto-initialize`]: https://pyo3.rs/main/features.html#auto-initialize
    #[inline]
    pub fn with_gil<F, R>(f: F) -> R
    where
        F: for<'py> FnOnce(Python<'py>) -> R,
    {
        let guard = GILGuard::acquire();

        // SAFETY: Either the GIL was already acquired or we just created a new `GILGuard`.
        f(guard.python())
    }

    /// Like [`Python::with_gil`] except Python interpreter state checking is skipped.
    ///
    /// Normally when the GIL is acquired, we check that the Python interpreter is an
    /// appropriate state (e.g. it is fully initialized). This function skips those
    /// checks.
    ///
    /// # Safety
    ///
    /// If [`Python::with_gil`] would succeed, it is safe to call this function.
    ///
    /// In most cases, you should use [`Python::with_gil`].
    ///
    /// A justified scenario for calling this function is during multi-phase interpreter
    /// initialization when [`Python::with_gil`] would fail before
    // this link is only valid on 3.8+not pypy and up.
    #[cfg_attr(
        all(Py_3_8, not(PyPy)),
        doc = "[`_Py_InitializeMain`](crate::ffi::_Py_InitializeMain)"
    )]
    #[cfg_attr(any(not(Py_3_8), PyPy), doc = "`_Py_InitializeMain`")]
    /// is called because the interpreter is only partially initialized.
    ///
    /// Behavior in other scenarios is not documented.
    #[inline]
    pub unsafe fn with_gil_unchecked<F, R>(f: F) -> R
    where
        F: for<'py> FnOnce(Python<'py>) -> R,
    {
        let guard = GILGuard::acquire_unchecked();

        f(guard.python())
    }
}

impl<'py> Python<'py> {
    /// Temporarily releases the GIL, thus allowing other Python threads to run. The GIL will be
    /// reacquired when `F`'s scope ends.
    ///
    /// If you don't need to touch the Python
    /// interpreter for some time and have other Python threads around, this will let you run
    /// Rust-only code while letting those other Python threads make progress.
    ///
    /// Only types that implement [`Ungil`] can cross the closure. See the
    /// [module level documentation](self) for more information.
    ///
    /// If you need to pass Python objects into the closure you can use [`Py`]`<T>`to create a
    /// reference independent of the GIL lifetime. However, you cannot do much with those without a
    /// [`Python`] token, for which you'd need to reacquire the GIL.
    ///
    /// # Example: Releasing the GIL while running a computation in Rust-only code
    ///
    /// ```
    /// use pyo3::prelude::*;
    ///
    /// #[pyfunction]
    /// fn sum_numbers(py: Python<'_>, numbers: Vec<u32>) -> PyResult<u32> {
    ///     // We release the GIL here so any other Python threads get a chance to run.
    ///     py.allow_threads(move || {
    ///         // An example of an "expensive" Rust calculation
    ///         let sum = numbers.iter().sum();
    ///
    ///         Ok(sum)
    ///     })
    /// }
    /// #
    /// # fn main() -> PyResult<()> {
    /// #     Python::with_gil(|py| -> PyResult<()> {
    /// #         let fun = pyo3::wrap_pyfunction!(sum_numbers, py)?;
    /// #         let res = fun.call1((vec![1_u32, 2, 3],))?;
    /// #         assert_eq!(res.extract::<u32>()?, 6_u32);
    /// #         Ok(())
    /// #     })
    /// # }
    /// ```
    ///
    /// Please see the [Parallelism] chapter of the guide for a thorough discussion of using
    /// [`Python::allow_threads`] in this manner.
    ///
    /// # Example: Passing borrowed Python references into the closure is not allowed
    ///
    /// ```compile_fail
    /// use pyo3::prelude::*;
    /// use pyo3::types::PyString;
    ///
    /// fn parallel_print(py: Python<'_>) {
    ///     let s = PyString::new_bound(py, "This object cannot be accessed without holding the GIL >_<");
    ///     py.allow_threads(move || {
    ///         println!("{:?}", s); // This causes a compile error.
    ///     });
    /// }
    /// ```
    ///
    /// [`Py`]: crate::Py
    /// [`PyString`]: crate::types::PyString
    /// [auto-traits]: https://doc.rust-lang.org/nightly/unstable-book/language-features/auto-traits.html
    /// [Parallelism]: https://pyo3.rs/main/parallelism.html
    pub fn allow_threads<T, F>(self, f: F) -> T
    where
        F: Ungil + FnOnce() -> T,
        T: Ungil,
    {
        // Use a guard pattern to handle reacquiring the GIL,
        // so that the GIL will be reacquired even if `f` panics.
        // The `Send` bound on the closure prevents the user from
        // transferring the `Python` token into the closure.
        let _guard = unsafe { SuspendGIL::new() };
        f()
    }

    /// Evaluates a Python expression in the given context and returns the result.
    ///
    /// If `globals` is `None`, it defaults to Python module `__main__`.
    /// If `locals` is `None`, it defaults to the value of `globals`.
    ///
    /// If `globals` doesn't contain `__builtins__`, default `__builtins__`
    /// will be added automatically.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pyo3::prelude::*;
    /// # use pyo3::ffi::c_str;
    /// # Python::with_gil(|py| {
    /// let result = py.eval(c_str!("[i * 10 for i in range(5)]"), None, None).unwrap();
    /// let res: Vec<i64> = result.extract().unwrap();
    /// assert_eq!(res, vec![0, 10, 20, 30, 40])
    /// # });
    /// ```
    pub fn eval(
        self,
        code: &CStr,
        globals: Option<&Bound<'py, PyDict>>,
        locals: Option<&Bound<'py, PyDict>>,
    ) -> PyResult<Bound<'py, PyAny>> {
        self.run_code(code, ffi::Py_eval_input, globals, locals)
    }

    /// Deprecated name for [`Python::eval`].
    #[deprecated(since = "0.23.0", note = "renamed to `Python::eval`")]
    #[track_caller]
    #[inline]
    pub fn eval_bound(
        self,
        code: &str,
        globals: Option<&Bound<'py, PyDict>>,
        locals: Option<&Bound<'py, PyDict>>,
    ) -> PyResult<Bound<'py, PyAny>> {
        let code = CString::new(code)?;
        self.eval(&code, globals, locals)
    }

    /// Executes one or more Python statements in the given context.
    ///
    /// If `globals` is `None`, it defaults to Python module `__main__`.
    /// If `locals` is `None`, it defaults to the value of `globals`.
    ///
    /// If `globals` doesn't contain `__builtins__`, default `__builtins__`
    /// will be added automatically.
    ///
    /// # Examples
    /// ```
    /// use pyo3::{
    ///     prelude::*,
    ///     types::{PyBytes, PyDict},
    ///     ffi::c_str,
    /// };
    /// Python::with_gil(|py| {
    ///     let locals = PyDict::new(py);
    ///     py.run(c_str!(
    ///         r#"
    /// import base64
    /// s = 'Hello Rust!'
    /// ret = base64.b64encode(s.encode('utf-8'))
    /// "#),
    ///         None,
    ///         Some(&locals),
    ///     )
    ///     .unwrap();
    ///     let ret = locals.get_item("ret").unwrap().unwrap();
    ///     let b64 = ret.downcast::<PyBytes>().unwrap();
    ///     assert_eq!(b64.as_bytes(), b"SGVsbG8gUnVzdCE=");
    /// });
    /// ```
    ///
    /// You can use [`py_run!`](macro.py_run.html) for a handy alternative of `run`
    /// if you don't need `globals` and unwrapping is OK.
    pub fn run(
        self,
        code: &CStr,
        globals: Option<&Bound<'py, PyDict>>,
        locals: Option<&Bound<'py, PyDict>>,
    ) -> PyResult<()> {
        let res = self.run_code(code, ffi::Py_file_input, globals, locals);
        res.map(|obj| {
            debug_assert!(obj.is_none());
        })
    }

    /// Deprecated name for [`Python::run`].
    #[deprecated(since = "0.23.0", note = "renamed to `Python::run`")]
    #[track_caller]
    #[inline]
    pub fn run_bound(
        self,
        code: &str,
        globals: Option<&Bound<'py, PyDict>>,
        locals: Option<&Bound<'py, PyDict>>,
    ) -> PyResult<()> {
        let code = CString::new(code)?;
        self.run(&code, globals, locals)
    }

    /// Runs code in the given context.
    ///
    /// `start` indicates the type of input expected: one of `Py_single_input`,
    /// `Py_file_input`, or `Py_eval_input`.
    ///
    /// If `globals` is `None`, it defaults to Python module `__main__`.
    /// If `locals` is `None`, it defaults to the value of `globals`.
    fn run_code(
        self,
        code: &CStr,
        start: c_int,
        globals: Option<&Bound<'py, PyDict>>,
        locals: Option<&Bound<'py, PyDict>>,
    ) -> PyResult<Bound<'py, PyAny>> {
        let mptr = unsafe {
            ffi::compat::PyImport_AddModuleRef(ffi::c_str!("__main__").as_ptr())
                .assume_owned_or_err(self)?
        };
        let attr = mptr.getattr(crate::intern!(self, "__dict__"))?;
        let globals = match globals {
            Some(globals) => globals,
            None => attr.downcast::<PyDict>()?,
        };
        let locals = locals.unwrap_or(globals);

        #[cfg(not(Py_3_10))]
        {
            // If `globals` don't provide `__builtins__`, most of the code will fail if Python
            // version is <3.10. That's probably not what user intended, so insert `__builtins__`
            // for them.
            //
            // See also:
            // - https://github.com/python/cpython/pull/24564 (the same fix in CPython 3.10)
            // - https://github.com/PyO3/pyo3/issues/3370
            let builtins_s = crate::intern!(self, "__builtins__").as_ptr();
            let has_builtins = unsafe { ffi::PyDict_Contains(globals.as_ptr(), builtins_s) };
            if has_builtins == -1 {
                return Err(PyErr::fetch(self));
            }
            if has_builtins == 0 {
                // Inherit current builtins.
                let builtins = unsafe { ffi::PyEval_GetBuiltins() };

                // `PyDict_SetItem` doesn't take ownership of `builtins`, but `PyEval_GetBuiltins`
                // seems to return a borrowed reference, so no leak here.
                if unsafe { ffi::PyDict_SetItem(globals.as_ptr(), builtins_s, builtins) } == -1 {
                    return Err(PyErr::fetch(self));
                }
            }
        }

        let code_obj = unsafe {
            ffi::Py_CompileString(code.as_ptr(), ffi::c_str!("<string>").as_ptr(), start)
                .assume_owned_or_err(self)?
        };

        unsafe {
            ffi::PyEval_EvalCode(code_obj.as_ptr(), globals.as_ptr(), locals.as_ptr())
                .assume_owned_or_err(self)
                .downcast_into_unchecked()
        }
    }

    /// Gets the Python type object for type `T`.
    #[inline]
    pub fn get_type<T>(self) -> Bound<'py, PyType>
    where
        T: PyTypeInfo,
    {
        T::type_object(self)
    }

    /// Deprecated name for [`Python::get_type`].
    #[deprecated(since = "0.23.0", note = "renamed to `Python::get_type`")]
    #[track_caller]
    #[inline]
    pub fn get_type_bound<T>(self) -> Bound<'py, PyType>
    where
        T: PyTypeInfo,
    {
        self.get_type::<T>()
    }

    /// Imports the Python module with the specified name.
    pub fn import<N>(self, name: N) -> PyResult<Bound<'py, PyModule>>
    where
        N: IntoPyObject<'py, Target = PyString>,
    {
        PyModule::import(self, name)
    }

    /// Deprecated name for [`Python::import`].
    #[deprecated(since = "0.23.0", note = "renamed to `Python::import`")]
    #[track_caller]
    #[inline]
    pub fn import_bound<N>(self, name: N) -> PyResult<Bound<'py, PyModule>>
    where
        N: IntoPy<Py<PyString>>,
    {
        self.import(name.into_py(self))
    }

    /// Gets the Python builtin value `None`.
    #[allow(non_snake_case)] // the Python keyword starts with uppercase
    #[inline]
    pub fn None(self) -> PyObject {
        PyNone::get(self).into_py(self)
    }

    /// Gets the Python builtin value `Ellipsis`, or `...`.
    #[allow(non_snake_case)] // the Python keyword starts with uppercase
    #[inline]
    pub fn Ellipsis(self) -> PyObject {
        PyEllipsis::get(self).into_py(self)
    }

    /// Gets the Python builtin value `NotImplemented`.
    #[allow(non_snake_case)] // the Python keyword starts with uppercase
    #[inline]
    pub fn NotImplemented(self) -> PyObject {
        PyNotImplemented::get(self).into_py(self)
    }

    /// Gets the running Python interpreter version as a string.
    ///
    /// # Examples
    /// ```rust
    /// # use pyo3::Python;
    /// Python::with_gil(|py| {
    ///     // The full string could be, for example:
    ///     // "3.10.0 (tags/v3.10.0:b494f59, Oct  4 2021, 19:00:18) [MSC v.1929 64 bit (AMD64)]"
    ///     assert!(py.version().starts_with("3."));
    /// });
    /// ```
    pub fn version(self) -> &'py str {
        unsafe {
            CStr::from_ptr(ffi::Py_GetVersion())
                .to_str()
                .expect("Python version string not UTF-8")
        }
    }

    /// Gets the running Python interpreter version as a struct similar to
    /// `sys.version_info`.
    ///
    /// # Examples
    /// ```rust
    /// # use pyo3::Python;
    /// Python::with_gil(|py| {
    ///     // PyO3 supports Python 3.7 and up.
    ///     assert!(py.version_info() >= (3, 7));
    ///     assert!(py.version_info() >= (3, 7, 0));
    /// });
    /// ```
    pub fn version_info(self) -> PythonVersionInfo<'py> {
        let version_str = self.version();

        // Portion of the version string returned by Py_GetVersion up to the first space is the
        // version number.
        let version_number_str = version_str.split(' ').next().unwrap_or(version_str);

        PythonVersionInfo::from_str(version_number_str).unwrap()
    }

    /// Lets the Python interpreter check and handle any pending signals. This will invoke the
    /// corresponding signal handlers registered in Python (if any).
    ///
    /// Returns `Err(`[`PyErr`]`)` if any signal handler raises an exception.
    ///
    /// These signals include `SIGINT` (normally raised by CTRL + C), which by default raises
    /// `KeyboardInterrupt`. For this reason it is good practice to call this function regularly
    /// as part of long-running Rust functions so that users can cancel it.
    ///
    /// # Example
    ///
    /// ```rust
    /// # #![allow(dead_code)] // this example is quite impractical to test
    /// use pyo3::prelude::*;
    ///
    /// # fn main() {
    /// #[pyfunction]
    /// fn loop_forever(py: Python<'_>) -> PyResult<()> {
    ///     loop {
    ///         // As this loop is infinite it should check for signals every once in a while.
    ///         // Using `?` causes any `PyErr` (potentially containing `KeyboardInterrupt`)
    ///         // to break out of the loop.
    ///         py.check_signals()?;
    ///
    ///         // do work here
    ///         # break Ok(()) // don't actually loop forever
    ///     }
    /// }
    /// # }
    /// ```
    ///
    /// # Note
    ///
    /// This function calls [`PyErr_CheckSignals()`][1] which in turn may call signal handlers.
    /// As Python's [`signal`][2] API allows users to define custom signal handlers, calling this
    /// function allows arbitrary Python code inside signal handlers to run.
    ///
    /// If the function is called from a non-main thread, or under a non-main Python interpreter,
    /// it does nothing yet still returns `Ok(())`.
    ///
    /// [1]: https://docs.python.org/3/c-api/exceptions.html?highlight=pyerr_checksignals#c.PyErr_CheckSignals
    /// [2]: https://docs.python.org/3/library/signal.html
    pub fn check_signals(self) -> PyResult<()> {
        err::error_on_minusone(self, unsafe { ffi::PyErr_CheckSignals() })
    }
}

impl<'unbound> Python<'unbound> {
    /// Unsafely creates a Python token with an unbounded lifetime.
    ///
    /// Many of PyO3 APIs use `Python<'_>` as proof that the GIL is held, but this function can be
    /// used to call them unsafely.
    ///
    /// # Safety
    ///
    /// - This token and any borrowed Python references derived from it can only be safely used
    ///   whilst the currently executing thread is actually holding the GIL.
    /// - This function creates a token with an *unbounded* lifetime. Safe code can assume that
    ///   holding a `Python<'py>` token means the GIL is and stays acquired for the lifetime `'py`.
    ///   If you let it or borrowed Python references escape to safe code you are
    ///   responsible for bounding the lifetime `'unbound` appropriately. For more on unbounded
    ///   lifetimes, see the [nomicon].
    ///
    /// [nomicon]: https://doc.rust-lang.org/nomicon/unbounded-lifetimes.html
    #[inline]
    pub unsafe fn assume_gil_acquired() -> Python<'unbound> {
        Python(PhantomData)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::types::{IntoPyDict, PyList};

    #[test]
    fn test_eval() {
        Python::with_gil(|py| {
            // Make sure builtin names are accessible
            let v: i32 = py
                .eval(ffi::c_str!("min(1, 2)"), None, None)
                .map_err(|e| e.display(py))
                .unwrap()
                .extract()
                .unwrap();
            assert_eq!(v, 1);

            let d = [("foo", 13)].into_py_dict(py).unwrap();

            // Inject our own global namespace
            let v: i32 = py
                .eval(ffi::c_str!("foo + 29"), Some(&d), None)
                .unwrap()
                .extract()
                .unwrap();
            assert_eq!(v, 42);

            // Inject our own local namespace
            let v: i32 = py
                .eval(ffi::c_str!("foo + 29"), None, Some(&d))
                .unwrap()
                .extract()
                .unwrap();
            assert_eq!(v, 42);

            // Make sure builtin names are still accessible when using a local namespace
            let v: i32 = py
                .eval(ffi::c_str!("min(foo, 2)"), None, Some(&d))
                .unwrap()
                .extract()
                .unwrap();
            assert_eq!(v, 2);
        });
    }

    #[test]
    #[cfg(not(target_arch = "wasm32"))] // We are building wasm Python with pthreads disabled
    fn test_allow_threads_releases_and_acquires_gil() {
        Python::with_gil(|py| {
            let b = std::sync::Arc::new(std::sync::Barrier::new(2));

            let b2 = b.clone();
            std::thread::spawn(move || Python::with_gil(|_| b2.wait()));

            py.allow_threads(|| {
                // If allow_threads does not release the GIL, this will deadlock because
                // the thread spawned above will never be able to acquire the GIL.
                b.wait();
            });

            unsafe {
                // If the GIL is not reacquired at the end of allow_threads, this call
                // will crash the Python interpreter.
                let tstate = ffi::PyEval_SaveThread();
                ffi::PyEval_RestoreThread(tstate);
            }
        });
    }

    #[test]
    fn test_allow_threads_panics_safely() {
        Python::with_gil(|py| {
            let result = std::panic::catch_unwind(|| unsafe {
                let py = Python::assume_gil_acquired();
                py.allow_threads(|| {
                    panic!("There was a panic!");
                });
            });

            // Check panic was caught
            assert!(result.is_err());

            // If allow_threads is implemented correctly, this thread still owns the GIL here
            // so the following Python calls should not cause crashes.
            let list = PyList::new(py, [1, 2, 3, 4]).unwrap();
            assert_eq!(list.extract::<Vec<i32>>().unwrap(), vec![1, 2, 3, 4]);
        });
    }

    #[cfg(not(pyo3_disable_reference_pool))]
    #[test]
    fn test_allow_threads_pass_stuff_in() {
        let list = Python::with_gil(|py| PyList::new(py, vec!["foo", "bar"]).unwrap().unbind());
        let mut v = vec![1, 2, 3];
        let a = std::sync::Arc::new(String::from("foo"));

        Python::with_gil(|py| {
            py.allow_threads(|| {
                drop((list, &mut v, a));
            });
        });
    }

    #[test]
    #[cfg(not(Py_LIMITED_API))]
    fn test_acquire_gil() {
        const GIL_NOT_HELD: c_int = 0;
        const GIL_HELD: c_int = 1;

        // Before starting the interpreter the state of calling `PyGILState_Check`
        // seems to be undefined, so let's ensure that Python is up.
        #[cfg(not(any(PyPy, GraalPy)))]
        crate::prepare_freethreaded_python();

        let state = unsafe { crate::ffi::PyGILState_Check() };
        assert_eq!(state, GIL_NOT_HELD);

        Python::with_gil(|_| {
            let state = unsafe { crate::ffi::PyGILState_Check() };
            assert_eq!(state, GIL_HELD);
        });

        let state = unsafe { crate::ffi::PyGILState_Check() };
        assert_eq!(state, GIL_NOT_HELD);
    }

    #[test]
    fn test_ellipsis() {
        Python::with_gil(|py| {
            assert_eq!(py.Ellipsis().to_string(), "Ellipsis");

            let v = py
                .eval(ffi::c_str!("..."), None, None)
                .map_err(|e| e.display(py))
                .unwrap();

            assert!(v.eq(py.Ellipsis()).unwrap());
        });
    }

    #[test]
    fn test_py_run_inserts_globals() {
        use crate::types::dict::PyDictMethods;

        Python::with_gil(|py| {
            let namespace = PyDict::new(py);
            py.run(
                ffi::c_str!("class Foo: pass\na = int(3)"),
                Some(&namespace),
                Some(&namespace),
            )
            .unwrap();
            assert!(matches!(namespace.get_item("Foo"), Ok(Some(..))));
            assert!(matches!(namespace.get_item("a"), Ok(Some(..))));
            // 3.9 and older did not automatically insert __builtins__ if it wasn't inserted "by hand"
            #[cfg(not(Py_3_10))]
            assert!(matches!(namespace.get_item("__builtins__"), Ok(Some(..))));
        })
    }
}