1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//! Synchronization mechanisms based on the Python GIL.
//!
//! With the acceptance of [PEP 703] (aka a "freethreaded Python") for Python 3.13, these
//! are likely to undergo significant developments in the future.
//!
//! [PEP 703]: https://peps.python.org/pep-703/
use crate::{
    types::{any::PyAnyMethods, PyString, PyType},
    Bound, Py, PyResult, PyVisit, Python,
};
use std::cell::UnsafeCell;

/// Value with concurrent access protected by the GIL.
///
/// This is a synchronization primitive based on Python's global interpreter lock (GIL).
/// It ensures that only one thread at a time can access the inner value via shared references.
/// It can be combined with interior mutability to obtain mutable references.
///
/// # Example
///
/// Combining `GILProtected` with `RefCell` enables mutable access to static data:
///
/// ```
/// # use pyo3::prelude::*;
/// use pyo3::sync::GILProtected;
/// use std::cell::RefCell;
///
/// static NUMBERS: GILProtected<RefCell<Vec<i32>>> = GILProtected::new(RefCell::new(Vec::new()));
///
/// Python::with_gil(|py| {
///     NUMBERS.get(py).borrow_mut().push(42);
/// });
/// ```
pub struct GILProtected<T> {
    value: T,
}

impl<T> GILProtected<T> {
    /// Place the given value under the protection of the GIL.
    pub const fn new(value: T) -> Self {
        Self { value }
    }

    /// Gain access to the inner value by giving proof of having acquired the GIL.
    pub fn get<'py>(&'py self, _py: Python<'py>) -> &'py T {
        &self.value
    }

    /// Gain access to the inner value by giving proof that garbage collection is happening.
    pub fn traverse<'py>(&'py self, _visit: PyVisit<'py>) -> &'py T {
        &self.value
    }
}

unsafe impl<T> Sync for GILProtected<T> where T: Send {}

/// A write-once cell similar to [`once_cell::OnceCell`](https://docs.rs/once_cell/latest/once_cell/).
///
/// Unlike `once_cell::sync` which blocks threads to achieve thread safety, this implementation
/// uses the Python GIL to mediate concurrent access. This helps in cases where `once_cell` or
/// `lazy_static`'s synchronization strategy can lead to deadlocks when interacting with the Python
/// GIL. For an example, see [the FAQ section](https://pyo3.rs/latest/faq.html) of the guide.
///
/// Note that:
///  1) `get_or_init` and `get_or_try_init` do not protect against infinite recursion
///     from reentrant initialization.
///  2) If the initialization function `f` provided to `get_or_init` (or `get_or_try_init`)
///     temporarily releases the GIL (e.g. by calling `Python::import`) then it is possible
///     for a second thread to also begin initializing the `GITOnceCell`. Even when this
///     happens `GILOnceCell` guarantees that only **one** write to the cell ever occurs
///     - this is treated as a race, other threads will discard the value they compute and
///     return the result of the first complete computation.
///
/// # Examples
///
/// The following example shows how to use `GILOnceCell` to share a reference to a Python list
/// between threads:
///
/// ```
/// use pyo3::sync::GILOnceCell;
/// use pyo3::prelude::*;
/// use pyo3::types::PyList;
///
/// static LIST_CELL: GILOnceCell<Py<PyList>> = GILOnceCell::new();
///
/// pub fn get_shared_list(py: Python<'_>) -> &Bound<'_, PyList> {
///     LIST_CELL
///         .get_or_init(py, || PyList::empty_bound(py).unbind())
///         .bind(py)
/// }
/// # Python::with_gil(|py| assert_eq!(get_shared_list(py).len(), 0));
/// ```
#[derive(Default)]
pub struct GILOnceCell<T>(UnsafeCell<Option<T>>);

// T: Send is needed for Sync because the thread which drops the GILOnceCell can be different
// to the thread which fills it.
unsafe impl<T: Send + Sync> Sync for GILOnceCell<T> {}
unsafe impl<T: Send> Send for GILOnceCell<T> {}

impl<T> GILOnceCell<T> {
    /// Create a `GILOnceCell` which does not yet contain a value.
    pub const fn new() -> Self {
        Self(UnsafeCell::new(None))
    }

    /// Get a reference to the contained value, or `None` if the cell has not yet been written.
    #[inline]
    pub fn get(&self, _py: Python<'_>) -> Option<&T> {
        // Safe because if the cell has not yet been written, None is returned.
        unsafe { &*self.0.get() }.as_ref()
    }

    /// Get a reference to the contained value, initializing it if needed using the provided
    /// closure.
    ///
    /// See the type-level documentation for detail on re-entrancy and concurrent initialization.
    #[inline]
    pub fn get_or_init<F>(&self, py: Python<'_>, f: F) -> &T
    where
        F: FnOnce() -> T,
    {
        if let Some(value) = self.get(py) {
            return value;
        }

        match self.init(py, || Ok::<T, std::convert::Infallible>(f())) {
            Ok(value) => value,
            Err(void) => match void {},
        }
    }

    /// Like `get_or_init`, but accepts a fallible initialization function. If it fails, the cell
    /// is left uninitialized.
    ///
    /// See the type-level documentation for detail on re-entrancy and concurrent initialization.
    #[inline]
    pub fn get_or_try_init<F, E>(&self, py: Python<'_>, f: F) -> Result<&T, E>
    where
        F: FnOnce() -> Result<T, E>,
    {
        if let Some(value) = self.get(py) {
            return Ok(value);
        }

        self.init(py, f)
    }

    #[cold]
    fn init<F, E>(&self, py: Python<'_>, f: F) -> Result<&T, E>
    where
        F: FnOnce() -> Result<T, E>,
    {
        // Note that f() could temporarily release the GIL, so it's possible that another thread
        // writes to this GILOnceCell before f() finishes. That's fine; we'll just have to discard
        // the value computed here and accept a bit of wasted computation.
        let value = f()?;
        let _ = self.set(py, value);

        Ok(self.get(py).unwrap())
    }

    /// Get the contents of the cell mutably. This is only possible if the reference to the cell is
    /// unique.
    pub fn get_mut(&mut self) -> Option<&mut T> {
        self.0.get_mut().as_mut()
    }

    /// Set the value in the cell.
    ///
    /// If the cell has already been written, `Err(value)` will be returned containing the new
    /// value which was not written.
    pub fn set(&self, _py: Python<'_>, value: T) -> Result<(), T> {
        // Safe because GIL is held, so no other thread can be writing to this cell concurrently.
        let inner = unsafe { &mut *self.0.get() };
        if inner.is_some() {
            return Err(value);
        }

        *inner = Some(value);
        Ok(())
    }

    /// Takes the value out of the cell, moving it back to an uninitialized state.
    ///
    /// Has no effect and returns None if the cell has not yet been written.
    pub fn take(&mut self) -> Option<T> {
        self.0.get_mut().take()
    }

    /// Consumes the cell, returning the wrapped value.
    ///
    /// Returns None if the cell has not yet been written.
    pub fn into_inner(self) -> Option<T> {
        self.0.into_inner()
    }
}

impl GILOnceCell<Py<PyType>> {
    /// Get a reference to the contained Python type, initializing it if needed.
    ///
    /// This is a shorthand method for `get_or_init` which imports the type from Python on init.
    pub(crate) fn get_or_try_init_type_ref<'py>(
        &self,
        py: Python<'py>,
        module_name: &str,
        attr_name: &str,
    ) -> PyResult<&Bound<'py, PyType>> {
        self.get_or_try_init(py, || {
            let type_object = py
                .import_bound(module_name)?
                .getattr(attr_name)?
                .downcast_into()?;
            Ok(type_object.unbind())
        })
        .map(|ty| ty.bind(py))
    }
}

/// Interns `text` as a Python string and stores a reference to it in static storage.
///
/// A reference to the same Python string is returned on each invocation.
///
/// # Example: Using `intern!` to avoid needlessly recreating the same Python string
///
/// ```
/// use pyo3::intern;
/// # use pyo3::{prelude::*, types::PyDict};
///
/// #[pyfunction]
/// fn create_dict(py: Python<'_>) -> PyResult<Bound<'_, PyDict>> {
///     let dict = PyDict::new_bound(py);
///     //             👇 A new `PyString` is created
///     //                for every call of this function.
///     dict.set_item("foo", 42)?;
///     Ok(dict)
/// }
///
/// #[pyfunction]
/// fn create_dict_faster(py: Python<'_>) -> PyResult<Bound<'_, PyDict>> {
///     let dict = PyDict::new_bound(py);
///     //               👇 A `PyString` is created once and reused
///     //                  for the lifetime of the program.
///     dict.set_item(intern!(py, "foo"), 42)?;
///     Ok(dict)
/// }
/// #
/// # Python::with_gil(|py| {
/// #     let fun_slow = wrap_pyfunction_bound!(create_dict, py).unwrap();
/// #     let dict = fun_slow.call0().unwrap();
/// #     assert!(dict.contains("foo").unwrap());
/// #     let fun = wrap_pyfunction_bound!(create_dict_faster, py).unwrap();
/// #     let dict = fun.call0().unwrap();
/// #     assert!(dict.contains("foo").unwrap());
/// # });
/// ```
#[macro_export]
macro_rules! intern {
    ($py: expr, $text: expr) => {{
        static INTERNED: $crate::sync::Interned = $crate::sync::Interned::new($text);
        INTERNED.get($py)
    }};
}

/// Implementation detail for `intern!` macro.
#[doc(hidden)]
pub struct Interned(&'static str, GILOnceCell<Py<PyString>>);

impl Interned {
    /// Creates an empty holder for an interned `str`.
    pub const fn new(value: &'static str) -> Self {
        Interned(value, GILOnceCell::new())
    }

    /// Gets or creates the interned `str` value.
    #[inline]
    pub fn get<'py>(&self, py: Python<'py>) -> &Bound<'py, PyString> {
        self.1
            .get_or_init(py, || PyString::intern_bound(py, self.0).into())
            .bind(py)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::types::{dict::PyDictMethods, PyDict};

    #[test]
    fn test_intern() {
        Python::with_gil(|py| {
            let foo1 = "foo";
            let foo2 = intern!(py, "foo");
            let foo3 = intern!(py, stringify!(foo));

            let dict = PyDict::new_bound(py);
            dict.set_item(foo1, 42_usize).unwrap();
            assert!(dict.contains(foo2).unwrap());
            assert_eq!(
                dict.get_item(foo3)
                    .unwrap()
                    .unwrap()
                    .extract::<usize>()
                    .unwrap(),
                42
            );
        });
    }

    #[test]
    fn test_once_cell() {
        Python::with_gil(|py| {
            let mut cell = GILOnceCell::new();

            assert!(cell.get(py).is_none());

            assert_eq!(cell.get_or_try_init(py, || Err(5)), Err(5));
            assert!(cell.get(py).is_none());

            assert_eq!(cell.get_or_try_init(py, || Ok::<_, ()>(2)), Ok(&2));
            assert_eq!(cell.get(py), Some(&2));

            assert_eq!(cell.get_or_try_init(py, || Err(5)), Ok(&2));

            assert_eq!(cell.take(), Some(2));
            assert_eq!(cell.into_inner(), None)
        })
    }
}