1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#[cfg(feature = "experimental-inspect")]
use crate::inspect::types::TypeInfo;
use crate::{
    ffi, ffi_ptr_ext::FfiPtrExt, instance::Bound, FromPyObject, IntoPy, PyAny, PyErr, PyNativeType,
    PyObject, PyResult, Python, ToPyObject,
};
use std::os::raw::c_double;

use super::any::PyAnyMethods;

/// Represents a Python `float` object.
///
/// You can usually avoid directly working with this type
/// by using [`ToPyObject`] and [`extract`](PyAny::extract)
/// with `f32`/`f64`.
#[repr(transparent)]
pub struct PyFloat(PyAny);

pyobject_native_type!(
    PyFloat,
    ffi::PyFloatObject,
    pyobject_native_static_type_object!(ffi::PyFloat_Type),
    #checkfunction=ffi::PyFloat_Check
);

impl PyFloat {
    /// Deprecated form of [`PyFloat::new_bound`].
    #[inline]
    #[cfg_attr(
        not(feature = "gil-refs"),
        deprecated(
            since = "0.21.0",
            note = "`PyFloat::new` will be replaced by `PyFloat::new_bound` in a future PyO3 version"
        )
    )]
    pub fn new(py: Python<'_>, val: f64) -> &'_ Self {
        Self::new_bound(py, val).into_gil_ref()
    }

    /// Creates a new Python `float` object.
    pub fn new_bound(py: Python<'_>, val: c_double) -> Bound<'_, PyFloat> {
        unsafe {
            ffi::PyFloat_FromDouble(val)
                .assume_owned(py)
                .downcast_into_unchecked()
        }
    }

    /// Gets the value of this float.
    pub fn value(&self) -> c_double {
        self.as_borrowed().value()
    }
}

/// Implementation of functionality for [`PyFloat`].
///
/// These methods are defined for the `Bound<'py, PyFloat>` smart pointer, so to use method call
/// syntax these methods are separated into a trait, because stable Rust does not yet support
/// `arbitrary_self_types`.
#[doc(alias = "PyFloat")]
pub trait PyFloatMethods<'py>: crate::sealed::Sealed {
    /// Gets the value of this float.
    fn value(&self) -> c_double;
}

impl<'py> PyFloatMethods<'py> for Bound<'py, PyFloat> {
    fn value(&self) -> c_double {
        #[cfg(not(Py_LIMITED_API))]
        unsafe {
            // Safety: self is PyFloat object
            ffi::PyFloat_AS_DOUBLE(self.as_ptr())
        }

        #[cfg(Py_LIMITED_API)]
        unsafe {
            ffi::PyFloat_AsDouble(self.as_ptr())
        }
    }
}

impl ToPyObject for f64 {
    fn to_object(&self, py: Python<'_>) -> PyObject {
        PyFloat::new_bound(py, *self).into()
    }
}

impl IntoPy<PyObject> for f64 {
    fn into_py(self, py: Python<'_>) -> PyObject {
        PyFloat::new_bound(py, self).into()
    }

    #[cfg(feature = "experimental-inspect")]
    fn type_output() -> TypeInfo {
        TypeInfo::builtin("float")
    }
}

impl<'py> FromPyObject<'py> for f64 {
    // PyFloat_AsDouble returns -1.0 upon failure
    #![allow(clippy::float_cmp)]
    fn extract_bound(obj: &Bound<'py, PyAny>) -> PyResult<Self> {
        // On non-limited API, .value() uses PyFloat_AS_DOUBLE which
        // allows us to have an optimized fast path for the case when
        // we have exactly a `float` object (it's not worth going through
        // `isinstance` machinery for subclasses).
        #[cfg(not(Py_LIMITED_API))]
        if let Ok(float) = obj.downcast_exact::<PyFloat>() {
            return Ok(float.value());
        }

        let v = unsafe { ffi::PyFloat_AsDouble(obj.as_ptr()) };

        if v == -1.0 {
            if let Some(err) = PyErr::take(obj.py()) {
                return Err(err);
            }
        }

        Ok(v)
    }

    #[cfg(feature = "experimental-inspect")]
    fn type_input() -> TypeInfo {
        Self::type_output()
    }
}

impl ToPyObject for f32 {
    fn to_object(&self, py: Python<'_>) -> PyObject {
        PyFloat::new_bound(py, f64::from(*self)).into()
    }
}

impl IntoPy<PyObject> for f32 {
    fn into_py(self, py: Python<'_>) -> PyObject {
        PyFloat::new_bound(py, f64::from(self)).into()
    }

    #[cfg(feature = "experimental-inspect")]
    fn type_output() -> TypeInfo {
        TypeInfo::builtin("float")
    }
}

impl<'py> FromPyObject<'py> for f32 {
    fn extract_bound(obj: &Bound<'py, PyAny>) -> PyResult<Self> {
        Ok(obj.extract::<f64>()? as f32)
    }

    #[cfg(feature = "experimental-inspect")]
    fn type_input() -> TypeInfo {
        Self::type_output()
    }
}

#[cfg(test)]
#[cfg_attr(not(feature = "gil-refs"), allow(deprecated))]
mod tests {
    use crate::{types::PyFloat, Python, ToPyObject};

    macro_rules! num_to_py_object_and_back (
        ($func_name:ident, $t1:ty, $t2:ty) => (
            #[test]
            fn $func_name() {
                use assert_approx_eq::assert_approx_eq;

                Python::with_gil(|py| {

                let val = 123 as $t1;
                let obj = val.to_object(py);
                assert_approx_eq!(obj.extract::<$t2>(py).unwrap(), val as $t2);
                });
            }
        )
    );

    num_to_py_object_and_back!(to_from_f64, f64, f64);
    num_to_py_object_and_back!(to_from_f32, f32, f32);
    num_to_py_object_and_back!(int_to_float, i32, f64);

    #[test]
    fn test_float_value() {
        use assert_approx_eq::assert_approx_eq;

        Python::with_gil(|py| {
            let v = 1.23f64;
            let obj = PyFloat::new(py, 1.23);
            assert_approx_eq!(v, obj.value());
        });
    }
}