1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
//! `PyClass` and related traits.
use crate::class::methods::{PyClassAttributeDef, PyMethodDefType, PyMethods};
use crate::class::proto_methods::PyProtoMethods;
use crate::conversion::{AsPyPointer, FromPyPointer};
use crate::derive_utils::PyBaseTypeUtils;
use crate::pyclass_slots::{PyClassDict, PyClassWeakRef};
use crate::type_object::{type_flags, PyLayout};
use crate::types::PyAny;
use crate::{class, ffi, PyCell, PyErr, PyNativeType, PyResult, PyTypeInfo, Python};
use std::ffi::CString;
use std::marker::PhantomData;
use std::os::raw::c_void;
use std::{ptr, thread};

#[inline]
pub(crate) unsafe fn default_new<T: PyTypeInfo>(
    py: Python,
    subtype: *mut ffi::PyTypeObject,
) -> *mut ffi::PyObject {
    // if the class derives native types(e.g., PyDict), call special new
    if T::FLAGS & type_flags::EXTENDED != 0 && T::BaseLayout::IS_NATIVE_TYPE {
        let base_tp = T::BaseType::type_object_raw(py);
        if let Some(base_new) = (*base_tp).tp_new {
            return base_new(subtype, ptr::null_mut(), ptr::null_mut());
        }
    }
    let alloc = (*subtype).tp_alloc.unwrap_or(ffi::PyType_GenericAlloc);
    alloc(subtype, 0) as _
}

/// This trait enables custom `tp_new`/`tp_dealloc` implementations for `T: PyClass`.
pub trait PyClassAlloc: PyTypeInfo + Sized {
    /// Allocate the actual field for `#[pyclass]`.
    ///
    /// # Safety
    /// This function must return a valid pointer to the Python heap.
    unsafe fn new(py: Python, subtype: *mut ffi::PyTypeObject) -> *mut Self::Layout {
        default_new::<Self>(py, subtype) as _
    }

    /// Deallocate `#[pyclass]` on the Python heap.
    ///
    /// # Safety
    /// `self_` must be a valid pointer to the Python heap.
    unsafe fn dealloc(py: Python, self_: *mut Self::Layout) {
        (*self_).py_drop(py);
        let obj = PyAny::from_borrowed_ptr_or_panic(py, self_ as _);
        if Self::is_exact_instance(obj) && ffi::PyObject_CallFinalizerFromDealloc(obj.as_ptr()) < 0
        {
            // tp_finalize resurrected.
            return;
        }

        match (*ffi::Py_TYPE(obj.as_ptr())).tp_free {
            Some(free) => free(obj.as_ptr() as *mut c_void),
            None => tp_free_fallback(obj.as_ptr()),
        }
    }
}

fn tp_dealloc<T: PyClassAlloc>() -> Option<ffi::destructor> {
    unsafe extern "C" fn dealloc<T>(obj: *mut ffi::PyObject)
    where
        T: PyClassAlloc,
    {
        let pool = crate::GILPool::new();
        let py = pool.python();
        <T as PyClassAlloc>::dealloc(py, (obj as *mut T::Layout) as _)
    }
    Some(dealloc::<T>)
}

pub(crate) unsafe fn tp_free_fallback(obj: *mut ffi::PyObject) {
    let ty = ffi::Py_TYPE(obj);
    if ffi::PyType_IS_GC(ty) != 0 {
        ffi::PyObject_GC_Del(obj as *mut c_void);
    } else {
        ffi::PyObject_Free(obj as *mut c_void);
    }

    // For heap types, PyType_GenericAlloc calls INCREF on the type objects,
    // so we need to call DECREF here:
    if ffi::PyType_HasFeature(ty, ffi::Py_TPFLAGS_HEAPTYPE) != 0 {
        ffi::Py_DECREF(ty as *mut ffi::PyObject);
    }
}

/// If `PyClass` is implemented for `T`, then we can use `T` in the Python world,
/// via `PyCell`.
///
/// The `#[pyclass]` attribute automatically implements this trait for your Rust struct,
/// so you don't have to use this trait directly.
pub trait PyClass:
    PyTypeInfo<Layout = PyCell<Self>, AsRefTarget = PyCell<Self>>
    + Sized
    + PyClassSend
    + PyClassAlloc
    + PyMethods
    + PyProtoMethods
{
    /// Specify this class has `#[pyclass(dict)]` or not.
    type Dict: PyClassDict;
    /// Specify this class has `#[pyclass(weakref)]` or not.
    type WeakRef: PyClassWeakRef;
    /// The closest native ancestor. This is `PyAny` by default, and when you declare
    /// `#[pyclass(extends=PyDict)]`, it's `PyDict`.
    type BaseNativeType: PyTypeInfo + PyNativeType;
}

#[cfg(not(Py_LIMITED_API))]
pub(crate) fn initialize_type_object<T>(
    py: Python,
    module_name: Option<&str>,
    type_object: &mut ffi::PyTypeObject,
) -> PyResult<()>
where
    T: PyClass,
{
    type_object.tp_doc = match T::DESCRIPTION {
        // PyPy will segfault if passed only a nul terminator as `tp_doc`, ptr::null() is OK though.
        "\0" => ptr::null(),
        s if s.as_bytes().ends_with(b"\0") => s.as_ptr() as _,
        // If the description is not null-terminated, create CString and leak it
        s => CString::new(s)?.into_raw(),
    };

    type_object.tp_base = T::BaseType::type_object_raw(py);

    type_object.tp_name = match module_name {
        Some(module_name) => CString::new(format!("{}.{}", module_name, T::NAME))?.into_raw(),
        None => CString::new(T::NAME)?.into_raw(),
    };

    // dealloc
    type_object.tp_dealloc = tp_dealloc::<T>();

    // type size
    type_object.tp_basicsize = std::mem::size_of::<T::Layout>() as ffi::Py_ssize_t;

    // __dict__ support
    if let Some(dict_offset) = PyCell::<T>::dict_offset() {
        type_object.tp_dictoffset = dict_offset as ffi::Py_ssize_t;
    }

    // weakref support
    if let Some(weakref_offset) = PyCell::<T>::weakref_offset() {
        type_object.tp_weaklistoffset = weakref_offset as ffi::Py_ssize_t;
    }

    // GC support
    if let Some(gc) = T::gc_methods() {
        unsafe { gc.as_ref() }.update_typeobj(type_object);
    }

    // descriptor protocol
    if let Some(descr) = T::descr_methods() {
        unsafe { descr.as_ref() }.update_typeobj(type_object);
    }

    // iterator methods
    if let Some(iter) = T::iter_methods() {
        unsafe { iter.as_ref() }.update_typeobj(type_object);
    }

    // nb_bool is a part of PyObjectProtocol, but should be placed under tp_as_number
    let mut nb_bool = None;
    // basic methods
    if let Some(basic) = T::basic_methods() {
        unsafe { basic.as_ref() }.update_typeobj(type_object);
        nb_bool = unsafe { basic.as_ref() }.nb_bool;
    }

    // number methods
    type_object.tp_as_number = T::number_methods()
        .map(|mut p| {
            unsafe { p.as_mut() }.nb_bool = nb_bool;
            p.as_ptr()
        })
        .unwrap_or_else(|| nb_bool.map_or_else(ptr::null_mut, ffi::PyNumberMethods::from_nb_bool));
    // mapping methods
    type_object.tp_as_mapping = T::mapping_methods().map_or_else(ptr::null_mut, |p| p.as_ptr());
    // sequence methods
    type_object.tp_as_sequence = T::sequence_methods().map_or_else(ptr::null_mut, |p| p.as_ptr());
    // async methods
    type_object.tp_as_async = T::async_methods().map_or_else(ptr::null_mut, |p| p.as_ptr());
    // buffer protocol
    type_object.tp_as_buffer = T::buffer_methods().map_or_else(ptr::null_mut, |p| p.as_ptr());

    let (new, call, mut methods) = py_class_method_defs::<T>();

    // normal methods
    if !methods.is_empty() {
        methods.push(ffi::PyMethodDef_INIT);
        type_object.tp_methods = Box::into_raw(methods.into_boxed_slice()) as _;
    }

    // __new__ method
    type_object.tp_new = new;
    // __call__ method
    type_object.tp_call = call;

    // properties
    let mut props = py_class_properties::<T>();

    if !T::Dict::IS_DUMMY {
        props.push(ffi::PyGetSetDef_DICT);
    }
    if !props.is_empty() {
        props.push(ffi::PyGetSetDef_INIT);
        type_object.tp_getset = Box::into_raw(props.into_boxed_slice()) as _;
    }

    // set type flags
    py_class_flags::<T>(type_object);

    // register type object
    unsafe {
        if ffi::PyType_Ready(type_object) == 0 {
            Ok(())
        } else {
            PyErr::fetch(py).into()
        }
    }
}

fn py_class_flags<T: PyTypeInfo>(type_object: &mut ffi::PyTypeObject) {
    if type_object.tp_traverse != None
        || type_object.tp_clear != None
        || T::FLAGS & type_flags::GC != 0
    {
        type_object.tp_flags = ffi::Py_TPFLAGS_DEFAULT | ffi::Py_TPFLAGS_HAVE_GC;
    } else {
        type_object.tp_flags = ffi::Py_TPFLAGS_DEFAULT;
    }
    if T::FLAGS & type_flags::BASETYPE != 0 {
        type_object.tp_flags |= ffi::Py_TPFLAGS_BASETYPE;
    }
}

pub(crate) fn py_class_attributes<T: PyMethods>() -> impl Iterator<Item = PyClassAttributeDef> {
    T::py_methods().into_iter().filter_map(|def| match def {
        PyMethodDefType::ClassAttribute(attr) => Some(*attr),
        _ => None,
    })
}

fn py_class_method_defs<T: PyMethods>() -> (
    Option<ffi::newfunc>,
    Option<ffi::PyCFunctionWithKeywords>,
    Vec<ffi::PyMethodDef>,
) {
    let mut defs = Vec::new();
    let mut call = None;
    let mut new = None;

    for def in T::py_methods() {
        match *def {
            PyMethodDefType::New(ref def) => {
                if let class::methods::PyMethodType::PyNewFunc(meth) = def.ml_meth {
                    new = Some(meth)
                }
            }
            PyMethodDefType::Call(ref def) => {
                if let class::methods::PyMethodType::PyCFunctionWithKeywords(meth) = def.ml_meth {
                    call = Some(meth)
                } else {
                    panic!("Method type is not supoorted by tp_call slot")
                }
            }
            PyMethodDefType::Method(ref def)
            | PyMethodDefType::Class(ref def)
            | PyMethodDefType::Static(ref def) => {
                defs.push(def.as_method_def());
            }
            _ => (),
        }
    }

    (new, call, defs)
}

fn py_class_properties<T: PyMethods>() -> Vec<ffi::PyGetSetDef> {
    let mut defs = std::collections::HashMap::new();

    for def in T::py_methods() {
        match *def {
            PyMethodDefType::Getter(ref getter) => {
                let name = getter.name.to_string();
                if !defs.contains_key(&name) {
                    let _ = defs.insert(name.clone(), ffi::PyGetSetDef_INIT);
                }
                let def = defs.get_mut(&name).expect("Failed to call get_mut");
                getter.copy_to(def);
            }
            PyMethodDefType::Setter(ref setter) => {
                let name = setter.name.to_string();
                if !defs.contains_key(&name) {
                    let _ = defs.insert(name.clone(), ffi::PyGetSetDef_INIT);
                }
                let def = defs.get_mut(&name).expect("Failed to call get_mut");
                setter.copy_to(def);
            }
            _ => (),
        }
    }

    defs.values().cloned().collect()
}

/// This trait is implemented for `#[pyclass]` and handles following two situations:
/// 1. In case `T` is `Send`, stub `ThreadChecker` is used and does nothing.
///    This implementation is used by default. Compile fails if `T: !Send`.
/// 2. In case `T` is `!Send`, `ThreadChecker` panics when `T` is accessed by another thread.
///    This implementation is used when `#[pyclass(unsendable)]` is given.
///    Panicking makes it safe to expose `T: !Send` to the Python interpreter, where all objects
///    can be accessed by multiple threads by `threading` module.
pub trait PyClassSend: Sized {
    type ThreadChecker: PyClassThreadChecker<Self>;
}

#[doc(hidden)]
pub trait PyClassThreadChecker<T>: Sized {
    fn ensure(&self);
    fn new() -> Self;
    private_decl! {}
}

/// Stub checker for `Send` types.
#[doc(hidden)]
pub struct ThreadCheckerStub<T: Send>(PhantomData<T>);

impl<T: Send> PyClassThreadChecker<T> for ThreadCheckerStub<T> {
    fn ensure(&self) {}
    fn new() -> Self {
        ThreadCheckerStub(PhantomData)
    }
    private_impl! {}
}

impl<T: PyNativeType> PyClassThreadChecker<T> for ThreadCheckerStub<crate::PyObject> {
    fn ensure(&self) {}
    fn new() -> Self {
        ThreadCheckerStub(PhantomData)
    }
    private_impl! {}
}

/// Thread checker for unsendable types.
/// Panics when the value is accessed by another thread.
#[doc(hidden)]
pub struct ThreadCheckerImpl<T>(thread::ThreadId, PhantomData<T>);

impl<T> PyClassThreadChecker<T> for ThreadCheckerImpl<T> {
    fn ensure(&self) {
        if thread::current().id() != self.0 {
            panic!(
                "{} is unsendable, but sent to another thread!",
                std::any::type_name::<T>()
            );
        }
    }
    fn new() -> Self {
        ThreadCheckerImpl(thread::current().id(), PhantomData)
    }
    private_impl! {}
}

/// Thread checker for types that have `Send` and `extends=...`.
/// Ensures that `T: Send` and the parent is not accessed by another thread.
#[doc(hidden)]
pub struct ThreadCheckerInherited<T: Send, U: PyBaseTypeUtils>(PhantomData<T>, U::ThreadChecker);

impl<T: Send, U: PyBaseTypeUtils> PyClassThreadChecker<T> for ThreadCheckerInherited<T, U> {
    fn ensure(&self) {
        self.1.ensure();
    }
    fn new() -> Self {
        ThreadCheckerInherited(PhantomData, U::ThreadChecker::new())
    }
    private_impl! {}
}