Async / Await

If you are working with a Python library that makes use of async functions or wish to provide Python bindings for an async Rust library, pyo3-asyncio likely has the tools you need. It provides conversions between async functions in both Python and Rust and was designed with first-class support for popular Rust runtimes such as tokio and async-std. In addition, all async Python code runs on the default asyncio event loop, so pyo3-asyncio should work just fine with existing Python libraries.

In the following sections, we'll give a general overview of pyo3-asyncio explaining how to call async Python functions with PyO3, how to call async Rust functions from Python, and how to configure your codebase to manage the runtimes of both.

Awaiting an Async Python Function in Rust

Let's take a look at a dead simple async Python function:

# Sleep for 1 second
async def py_sleep():
    await asyncio.sleep(1)

Async functions in Python are simply functions that return a coroutine object. For our purposes, we really don't need to know much about these coroutine objects. The key factor here is that calling an async function is just like calling a regular function, the only difference is that we have to do something special with the object that it returns.

Normally in Python, that something special is the await keyword, but in order to await this coroutine in Rust, we first need to convert it into Rust's version of a coroutine: a Future. That's where pyo3-asyncio comes in. pyo3_asyncio::into_future performs this conversion for us:


#![allow(unused)]
fn main() {
let future = Python::with_gil(|py| {
    // import the module containing the py_sleep function
    let example = py.import("example")?;

    // calling the py_sleep method like a normal function returns a coroutine
    let coroutine = example.call_method0("py_sleep")?;

    // convert the coroutine into a Rust future
    pyo3_asyncio::into_future(coroutine)
})?;

// await the future
future.await;
}

If you're interested in learning more about coroutines and awaitables in general, check out the Python 3 asyncio docs for more information.

Awaiting a Rust Future in Python

Here we have the same async function as before written in Rust using the async-std runtime:


#![allow(unused)]
fn main() {
/// Sleep for 1 second
async fn rust_sleep() {
    async_std::task::sleep(Duration::from_secs(1)).await;
}
}

Similar to Python, Rust's async functions also return a special object called a Future:


#![allow(unused)]
fn main() {
let future = rust_sleep();
}

We can convert this Future object into Python to make it awaitable. This tells Python that you can use the await keyword with it. In order to do this, we'll call pyo3_asyncio::async_std::into_coroutine:


#![allow(unused)]
fn main() {
#[pyfunction]
fn call_rust_sleep(py: Python) -> PyResult<PyObject> {
    pyo3_asyncio::async_std::into_coroutine(py, async move {
        rust_sleep().await;
        Ok(())
    })
}
}

In Python, we can call this pyo3 function just like any other async function:

from example import call_rust_sleep

async def rust_sleep():
    await call_rust_sleep()

Managing Event Loops

Python's event loop requires some special treatment, especially regarding the main thread. Some of Python's asyncio features, like proper signal handling, require control over the main thread, which doesn't always play well with Rust.

Luckily, Rust's event loops are pretty flexible and don't need control over the main thread, so in pyo3-asyncio, we decided the best way to handle Rust/Python interop was to just surrender the main thread to Python and run Rust's event loops in the background. Unfortunately, since most event loop implementations prefer control over the main thread, this can still make some things awkward.

PyO3 Asyncio Initialization

Because Python needs to control the main thread, we can't use the convenient proc macros from Rust runtimes to handle the main function or #[test] functions. Instead, the initialization for PyO3 has to be done from the main function and the main thread must block on pyo3_asyncio::run_forever or pyo3_asyncio::async_std::run_until_complete.

Because we have to block on one of those functions, we can't use #[async_std::main] or #[tokio::main] since it's not a good idea to make long blocking calls during an async function.

Internally, these #[main] proc macros are expanded to something like this:

fn main() {
    // your async main fn
    async fn _main_impl() { /* ... */ }
    Runtime::new().block_on(_main_impl());   
}

Making a long blocking call inside the Future that's being driven by block_on prevents that thread from doing anything else and can spell trouble for some runtimes (also this will actually deadlock a single-threaded runtime!). Many runtimes have some sort of spawn_blocking mechanism that can avoid this problem, but again that's not something we can use here since we need it to block on the main thread.

For this reason, pyo3-asyncio provides its own set of proc macros to provide you with this initialization. These macros are intended to mirror the initialization of async-std and tokio while also satisfying the Python runtime's needs.

Here's a full example of PyO3 initialization with the async-std runtime:

use pyo3::prelude::*;

#[pyo3_asyncio::async_std::main]
async fn main() -> PyResult<()> {
    // PyO3 is initialized - Ready to go

    let fut = Python::with_gil(|py| {
        let asyncio = py.import("asyncio")?;

        // convert asyncio.sleep into a Rust Future
        pyo3_asyncio::into_future(asyncio.call_method1("sleep", (1.into_py(py),))?)
    })?;

    fut.await?;

    Ok(())
}

PyO3 Asyncio in Cargo Tests

The default Cargo Test harness does not currently allow test crates to provide their own main function, so there doesn't seem to be a good way to allow Python to gain control over the main thread.

We can, however, override the default test harness and provide our own. pyo3-asyncio provides some utilities to help us do just that! In the following sections, we will provide an overview for constructing a Cargo integration test with pyo3-asyncio and adding your tests to it.

Main Test File

First, we need to create the test's main file. Although these tests are considered integration tests, we cannot put them in the tests directory since that is a special directory owned by Cargo. Instead, we put our tests in a pytests directory.

The name pytests is just a convention. You can name this folder anything you want in your own projects.

We'll also want to provide the test's main function. Most of the functionality that the test harness needs is packed in the pyo3_asyncio::testing::main function. This function will parse the test's CLI arguments, collect and pass the functions marked with #[pyo3_asyncio::async_std::test] or #[pyo3_asyncio::tokio::test] and pass them into the test harness for running and filtering.

pytests/test_example.rs for the tokio runtime:

#[pyo3_asyncio::tokio::main]
async fn main() -> pyo3::PyResult<()> {
    pyo3_asyncio::testing::main().await
}

pytests/test_example.rs for the async-std runtime:

#[pyo3_asyncio::async_std::main]
async fn main() -> pyo3::PyResult<()> {
    pyo3_asyncio::testing::main().await
}

Cargo Configuration

Next, we need to add our test file to the Cargo manifest by adding the following section to the Cargo.toml

[[test]]
name = "test_example"
path = "pytests/test_example.rs"
harness = false

Also add the testing and attributes features to the pyo3-asyncio dependency and select your preferred runtime:

pyo3-asyncio = { version = "0.13", features = ["testing", "attributes", "async-std-runtime"] }

At this point, you should be able to run the test via cargo test

Adding Tests to the PyO3 Asyncio Test Harness

We can add tests anywhere in the test crate with the runtime's corresponding #[test] attribute:

For async-std use the pyo3_asyncio::async_std::test attribute:

mod tests {
    use std::{time::Duration, thread};

    use pyo3::prelude::*;

    // tests can be async
    #[pyo3_asyncio::async_std::test]
    async fn test_async_sleep() -> PyResult<()> {
        async_std::task::sleep(Duration::from_secs(1)).await;
        Ok(())
    }

    // they can also be synchronous
    #[pyo3_asyncio::async_std::test]
    fn test_blocking_sleep() -> PyResult<()> {
        thread::sleep(Duration::from_secs(1));
        Ok(())
    }
}

#[pyo3_asyncio::async_std::main]
async fn main() -> pyo3::PyResult<()> {
    pyo3_asyncio::testing::main().await
}

For tokio use the pyo3_asyncio::tokio::test attribute:

mod tests {
    use std::{time::Duration, thread};

    use pyo3::prelude::*;

    // tests can be async
    #[pyo3_asyncio::tokio::test]
    async fn test_async_sleep() -> PyResult<()> {
        tokio::time::sleep(Duration::from_secs(1)).await;
        Ok(())
    }

    // they can also be synchronous
    #[pyo3_asyncio::tokio::test]
    fn test_blocking_sleep() -> PyResult<()> {
        thread::sleep(Duration::from_secs(1));
        Ok(())
    }
}

#[pyo3_asyncio::tokio::main]
async fn main() -> pyo3::PyResult<()> {
    pyo3_asyncio::testing::main().await
}