Migrating from older PyO3 versions

This guide can help you upgrade code through breaking changes from one PyO3 version to the next. For a detailed list of all changes, see the CHANGELOG.

from 0.20.* to 0.21

Click to expand

PyO3 0.21 introduces a new Bound<'py, T> smart pointer which replaces the existing "GIL Refs" API to interact with Python objects. For example, in PyO3 0.20 the reference &'py PyAny would be used to interact with Python objects. In PyO3 0.21 the updated type is Bound<'py, PyAny>. Making this change moves Rust ownership semantics out of PyO3's internals and into user code. This change fixes a known soundness edge case of interaction with gevent as well as improves CPU and memory performance. For a full history of discussion see https://github.com/PyO3/pyo3/issues/3382.

The "GIL Ref" &'py PyAny and similar types such as &'py PyDict continue to be available as a deprecated API. Due to the advantages of the new API it is advised that all users make the effort to upgrade as soon as possible.

In addition to the major API type overhaul, PyO3 has needed to make a few small breaking adjustments to other APIs to close correctness and soundness gaps.

The recommended steps to update to PyO3 0.21 is as follows:

  1. Enable the gil-refs feature to silence deprecations related to the API change
  2. Fix all other PyO3 0.21 migration steps
  3. Disable the gil-refs feature and migrate off the deprecated APIs

The following sections are laid out in this order.

Enable the gil-refs feature

Click to expand

To make the transition for the PyO3 ecosystem away from the GIL Refs API as smooth as possible, in PyO3 0.21 no APIs consuming or producing GIL Refs have been altered. Instead, variants using Bound<T> smart pointers have been introduced, for example PyTuple::new_bound which returns Bound<PyTuple> is the replacement form of PyTuple::new. The GIL Ref APIs have been deprecated, but to make migration easier it is possible to disable these deprecation warnings by enabling the gil-refs feature.

The one single exception where an existing API was changed in-place is the pyo3::intern! macro. Almost all uses of this macro did not need to update code to account it changing to return &Bound<PyString> immediately, and adding an intern_bound! replacement was perceived as adding more work for users.

It is recommended that users do this as a first step of updating to PyO3 0.21 so that the deprecation warnings do not get in the way of resolving the rest of the migration steps.

Before:

# Cargo.toml
[dependencies]
pyo3 = "0.20"

After:

# Cargo.toml
[dependencies]
pyo3 = { version = "0.21", features = ["gil-refs"] }

PyTypeInfo and PyTryFrom have been adjusted

Click to expand

The PyTryFrom trait has aged poorly, its try_from method now conflicts with TryFrom::try_from in the 2021 edition prelude. A lot of its functionality was also duplicated with PyTypeInfo.

To tighten up the PyO3 traits as part of the deprecation of the GIL Refs API the PyTypeInfo trait has had a simpler companion PyTypeCheck. The methods PyAny::downcast and PyAny::downcast_exact no longer use PyTryFrom as a bound, instead using PyTypeCheck and PyTypeInfo respectively.

To migrate, switch all type casts to use obj.downcast() instead of try_from(obj) (and similar for downcast_exact).

Before:

#![allow(deprecated)]
use pyo3::prelude::*;
use pyo3::types::{PyInt, PyList};
fn main() -> PyResult<()> {
Python::with_gil(|py| {
    let list = PyList::new(py, 0..5);
    let b = <PyInt as PyTryFrom>::try_from(list.get_item(0).unwrap())?;
    Ok(())
})
}

After:

use pyo3::prelude::*;
use pyo3::types::{PyInt, PyList};
fn main() -> PyResult<()> {
Python::with_gil(|py| {
    // Note that PyList::new is deprecated for PyList::new_bound as part of the GIL Refs API removal,
    // see the section below on migration to Bound<T>.
    #[allow(deprecated)]
    let list = PyList::new(py, 0..5);
    let b = list.get_item(0).unwrap().downcast::<PyInt>()?;
    Ok(())
})
}

Iter(A)NextOutput are deprecated

Click to expand

The __next__ and __anext__ magic methods can now return any type convertible into Python objects directly just like all other #[pymethods]. The IterNextOutput used by __next__ and IterANextOutput used by __anext__ are subsequently deprecated. Most importantly, this change allows returning an awaitable from __anext__ without non-sensically wrapping it into Yield or Some. Only the return types Option<T> and Result<Option<T>, E> are still handled in a special manner where Some(val) yields val and None stops iteration.

Starting with an implementation of a Python iterator using IterNextOutput, e.g.

#![allow(deprecated)]
use pyo3::prelude::*;
use pyo3::iter::IterNextOutput;

#[pyclass]
struct PyClassIter {
    count: usize,
}

#[pymethods]
impl PyClassIter {
    fn __next__(&mut self) -> IterNextOutput<usize, &'static str> {
        if self.count < 5 {
            self.count += 1;
            IterNextOutput::Yield(self.count)
        } else {
            IterNextOutput::Return("done")
        }
    }
}

If returning "done" via StopIteration is not really required, this should be written as

use pyo3::prelude::*;

#[pyclass]
struct PyClassIter {
    count: usize,
}

#[pymethods]
impl PyClassIter {
    fn __next__(&mut self) -> Option<usize> {
        if self.count < 5 {
            self.count += 1;
            Some(self.count)
        } else {
            None
        }
    }
}

This form also has additional benefits: It has already worked in previous PyO3 versions, it matches the signature of Rust's Iterator trait and it allows using a fast path in CPython which completely avoids the cost of raising a StopIteration exception. Note that using Option::transpose and the Result<Option<T>, E> variant, this form can also be used to wrap fallible iterators.

Alternatively, the implementation can also be done as it would in Python itself, i.e. by "raising" a StopIteration exception

use pyo3::prelude::*;
use pyo3::exceptions::PyStopIteration;

#[pyclass]
struct PyClassIter {
    count: usize,
}

#[pymethods]
impl PyClassIter {
    fn __next__(&mut self) -> PyResult<usize> {
        if self.count < 5 {
            self.count += 1;
            Ok(self.count)
        } else {
            Err(PyStopIteration::new_err("done"))
        }
    }
}

Finally, an asynchronous iterator can directly return an awaitable without confusing wrapping

use pyo3::prelude::*;

#[pyclass]
struct PyClassAwaitable {
    number: usize,
}

#[pymethods]
impl PyClassAwaitable {
    fn __next__(&self) -> usize {
        self.number
    }

    fn __await__(slf: Py<Self>) -> Py<Self> {
        slf
    }
}

#[pyclass]
struct PyClassAsyncIter {
    number: usize,
}

#[pymethods]
impl PyClassAsyncIter {
    fn __anext__(&mut self) -> PyClassAwaitable {
        self.number += 1;
        PyClassAwaitable {
            number: self.number,
        }
    }

    fn __aiter__(slf: Py<Self>) -> Py<Self> {
        slf
    }
}

PyType::name has been renamed to PyType::qualname

Click to expand

PyType::name has been renamed to PyType::qualname to indicate that it does indeed return the qualified name, matching the __qualname__ attribute. The newly added PyType::name yields the full name including the module name now which corresponds to __module__.__name__ on the level of attributes.

PyCell has been deprecated

Click to expand

Interactions with Python objects implemented in Rust no longer need to go though PyCell<T>. Instead iteractions with Python object now consistently go through Bound<T> or Py<T> independently of whether T is native Python object or a #[pyclass] implemented in Rust. Use Bound::new or Py::new respectively to create and Bound::borrow(_mut) / Py::borrow(_mut) to borrow the Rust object.

Migrating from the GIL Refs API to Bound<T>

Click to expand

To minimise breakage of code using the GIL Refs API, the Bound<T> smart pointer has been introduced by adding complements to all functions which accept or return GIL Refs. This allows code to migrate by replacing the deprecated APIs with the new ones.

To identify what to migrate, temporarily switch off the gil-refs feature to see deprecation warnings on almost all uses of APIs accepting and producing GIL Refs . Over one or more PRs it should be possible to follow the deprecation hints to update code. Depending on your development environment, switching off the gil-refs feature may introduce some very targeted breakages, so you may need to fixup those first.

For example, the following APIs have gained updated variants:

  • PyList::new, PyTyple::new and similar constructors have replacements PyList::new_bound, PyTuple::new_bound etc.
  • FromPyObject::extract has a new FromPyObject::extract_bound (see the section below)
  • The PyTypeInfo trait has had new _bound methods added to accept / return Bound<T>.

Because the new Bound<T> API brings ownership out of the PyO3 framework and into user code, there are a few places where user code is expected to need to adjust while switching to the new API:

  • Code will need to add the occasional & to borrow the new smart pointer as &Bound<T> to pass these types around (or use .clone() at the very small cost of increasing the Python reference count)
  • Bound<PyList> and Bound<PyTuple> cannot support indexing with list[0], you should use list.get_item(0) instead.
  • Bound<PyTuple>::iter_borrowed is slightly more efficient than Bound<PyTuple>::iter. The default iteration of Bound<PyTuple> cannot return borrowed references because Rust does not (yet) have "lending iterators". Similarly Bound<PyTuple>::get_borrowed_item is more efficient than Bound<PyTuple>::get_item for the same reason.
  • &Bound<T> does not implement FromPyObject (although it might be possible to do this in the future once the GIL Refs API is completely removed). Use bound_any.downcast::<T>() instead of bound_any.extract::<&Bound<T>>().
  • Bound<PyString>::to_str now borrows from the Bound<PyString> rather than from the 'py lifetime, so code will need to store the smart pointer as a value in some cases where previously &PyString was just used as a temporary. (There are some more details relating to this in the section below.)

To convert between &PyAny and &Bound<PyAny> you can use the as_borrowed() method:

let gil_ref: &PyAny = ...;
let bound: &Bound<PyAny> = &gil_ref.as_borrowed();

⚠️ Warning: dangling pointer trap 💣

Because of the ownership changes, code which uses .as_ptr() to convert &PyAny and other GIL Refs to a *mut pyo3_ffi::PyObject should take care to avoid creating dangling pointers now that Bound<PyAny> carries ownership.

For example, the following pattern with Option<&PyAny> can easily create a dangling pointer when migrating to the Bound<PyAny> smart pointer:

let opt: Option<&PyAny> = ...;
let p: *mut ffi::PyObject = opt.map_or(std::ptr::null_mut(), |any| any.as_ptr());

The correct way to migrate this code is to use .as_ref() to avoid dropping the Bound<PyAny> in the map_or closure:

let opt: Option<Bound<PyAny>> = ...;
let p: *mut ffi::PyObject = opt.as_ref().map_or(std::ptr::null_mut(), Bound::as_ptr);

Migrating FromPyObject implementations

FromPyObject has had a new method extract_bound which takes &Bound<'py, PyAny> as an argument instead of &PyAny. Both extract and extract_bound have been given default implementations in terms of the other, to avoid breaking code immediately on update to 0.21.

All implementations of FromPyObject should be switched from extract to extract_bound.

Before:

impl<'py> FromPyObject<'py> for MyType {
    fn extract(obj: &'py PyAny) -> PyResult<Self> {
        /* ... */
    }
}

After:

impl<'py> FromPyObject<'py> for MyType {
    fn extract_bound(obj: &Bound<'py, PyAny>) -> PyResult<Self> {
        /* ... */
    }
}

The expectation is that in 0.22 extract_bound will have the default implementation removed and in 0.23 extract will be removed.

Cases where PyO3 cannot emit GIL Ref deprecation warnings

Despite a large amount of deprecations warnings produced by PyO3 to aid with the transition from GIL Refs to the Bound API, there are a few cases where PyO3 cannot automatically warn on uses of GIL Refs. It is worth checking for these cases manually after the deprecation warnings have all been addressed:

  • Individual implementations of the FromPyObject trait cannot be deprecated, so PyO3 cannot warn about uses of code patterns like .extract<&PyAny>() which produce a GIL Ref.
  • GIL Refs in #[pyfunction] arguments emit a warning, but if the GIL Ref is wrapped inside another container such as Vec<&PyAny> then PyO3 cannot warn against this.
  • The wrap_pyfunction!(function)(py) deferred argument form of the wrap_pyfunction macro taking py: Python<'py> produces a GIL Ref, and due to limitations in type inference PyO3 cannot warn against this specific case.

Deactivating the gil-refs feature

Click to expand

As a final step of migration, deactivating the gil-refs feature will set up code for best performance and is intended to set up a forward-compatible API for PyO3 0.22.

At this point code that needed to manage GIL Ref memory can safely remove uses of GILPool (which are constructed by calls to Python::new_pool and Python::with_pool). Deprecation warnings will highlight these cases.

There is just one case of code that changes upon disabling these features: FromPyObject trait implementations for types that borrow directly from the input data cannot be implemented by PyO3 without GIL Refs (while the GIL Refs API is in the process of being removed). The main types affected are &str, Cow<'_, str>, &[u8], Cow<'_, u8>.

To make PyO3's core functionality continue to work while the GIL Refs API is in the process of being removed, disabling the gil-refs feature moves the implementations of FromPyObject for &str, Cow<'_, str>, &[u8], Cow<'_, u8> to a new temporary trait FromPyObjectBound. This trait is the expected future form of FromPyObject and has an additional lifetime 'a to enable these types to borrow data from Python objects.

A key thing to note here is because extracting to these types now ties them to the input lifetime, some extremely common patterns may need to be split into multiple Rust lines. For example, the following snippet of calling .extract::<&str>() directly on the result of .getattr() needs to be adjusted when deactivating the gil-refs-migration feature.

Before:

#[cfg(feature = "gil-refs-migration")] {
use pyo3::prelude::*;
use pyo3::types::{PyList, PyType};
fn example<'py>(py: Python<'py>) -> PyResult<()> {
#[allow(deprecated)] // GIL Ref API
let obj: &'py PyType = py.get_type::<PyList>();
let name: &'py str = obj.getattr("__name__")?.extract()?;
assert_eq!(name, "list");
Ok(())
}
Python::with_gil(example).unwrap();
}

After:

#[cfg(any(not(Py_LIMITED_API), Py_3_10))] {
use pyo3::prelude::*;
use pyo3::types::{PyList, PyType};
fn example<'py>(py: Python<'py>) -> PyResult<()> {
let obj: Bound<'py, PyType> = py.get_type_bound::<PyList>();
let name_obj: Bound<'py, PyAny> = obj.getattr("__name__")?;
// the lifetime of the data is no longer `'py` but the much shorter
// lifetime of the `name_obj` smart pointer above
let name: &'_ str = name_obj.extract()?;
assert_eq!(name, "list");
Ok(())
}
Python::with_gil(example).unwrap();
}

To avoid needing to worry about lifetimes at all, it is also possible to use the new PyBackedStr type, which stores a reference to the Python str without a lifetime attachment. In particular, PyBackedStr helps for abi3 builds for Python older than 3.10. Due to limitations in the abi3 CPython API for those older versions, PyO3 cannot offer a FromPyObjectBound implementation for &str on those versions. The easiest way to migrate for older abi3 builds is to replace any cases of .extract::<&str>() with .extract::<PyBackedStr>(). Alternatively, use .extract::<Cow<str>>(), .extract::<String>() to copy the data into Rust.

The following example uses the same snippet as those just above, but this time the final extracted type is PyBackedStr:

use pyo3::prelude::*;
use pyo3::types::{PyList, PyType};
fn example<'py>(py: Python<'py>) -> PyResult<()> {
use pyo3::pybacked::PyBackedStr;
let obj: Bound<'py, PyType> = py.get_type_bound::<PyList>();
let name: PyBackedStr = obj.getattr("__name__")?.extract()?;
assert_eq!(&*name, "list");
Ok(())
}
Python::with_gil(example).unwrap();

from 0.19.* to 0.20

Drop support for older technologies

Click to expand

PyO3 0.20 has increased minimum Rust version to 1.56. This enables use of newer language features and simplifies maintenance of the project.

PyDict::get_item now returns a Result

Click to expand

PyDict::get_item in PyO3 0.19 and older was implemented using a Python API which would suppress all exceptions and return None in those cases. This included errors in __hash__ and __eq__ implementations of the key being looked up.

Newer recommendations by the Python core developers advise against using these APIs which suppress exceptions, instead allowing exceptions to bubble upwards. PyDict::get_item_with_error already implemented this recommended behavior, so that API has been renamed to PyDict::get_item.

Before:

use pyo3::prelude::*;
use pyo3::exceptions::PyTypeError;
use pyo3::types::{PyDict, IntoPyDict};

fn main() {
let _ =
Python::with_gil(|py| {
    let dict: &PyDict = [("a", 1)].into_py_dict(py);
    // `a` is in the dictionary, with value 1
    assert!(dict.get_item("a").map_or(Ok(false), |x| x.eq(1))?);
    // `b` is not in the dictionary
    assert!(dict.get_item("b").is_none());
    // `dict` is not hashable, so this fails with a `TypeError`
    assert!(dict
        .get_item_with_error(dict)
        .unwrap_err()
        .is_instance_of::<PyTypeError>(py));
});
}

After:

use pyo3::prelude::*;
use pyo3::exceptions::PyTypeError;
use pyo3::types::{PyDict, IntoPyDict};

fn main() {
let _ =
Python::with_gil(|py| -> PyResult<()> {
    let dict: &PyDict = [("a", 1)].into_py_dict(py);
    // `a` is in the dictionary, with value 1
    assert!(dict.get_item("a")?.map_or(Ok(false), |x| x.eq(1))?);
    // `b` is not in the dictionary
    assert!(dict.get_item("b")?.is_none());
    // `dict` is not hashable, so this fails with a `TypeError`
    assert!(dict
        .get_item(dict)
        .unwrap_err()
        .is_instance_of::<PyTypeError>(py));

    Ok(())
});
}

Required arguments are no longer accepted after optional arguments

Click to expand

Trailing Option<T> arguments have an automatic default of None. To avoid unwanted changes when modifying function signatures, in PyO3 0.18 it was deprecated to have a required argument after an Option<T> argument without using #[pyo3(signature = (...))] to specify the intended defaults. In PyO3 0.20, this becomes a hard error.

Before:

#[pyfunction]
fn x_or_y(x: Option<u64>, y: u64) -> u64 {
    x.unwrap_or(y)
}

After:

#![allow(dead_code)]
use pyo3::prelude::*;

#[pyfunction]
#[pyo3(signature = (x, y))] // both x and y have no defaults and are required
fn x_or_y(x: Option<u64>, y: u64) -> u64 {
    x.unwrap_or(y)
}

Remove deprecated function forms

Click to expand

In PyO3 0.18 the #[args] attribute for #[pymethods], and directly specifying the function signature in #[pyfunction], was deprecated. This functionality has been removed in PyO3 0.20.

Before:

#[pyfunction]
#[pyo3(a, b = "0", "/")]
fn add(a: u64, b: u64) -> u64 {
    a + b
}

After:

#![allow(dead_code)]
use pyo3::prelude::*;

#[pyfunction]
#[pyo3(signature = (a, b=0, /))]
fn add(a: u64, b: u64) -> u64 {
    a + b
}

IntoPyPointer trait removed

Click to expand

The trait IntoPyPointer, which provided the into_ptr method on many types, has been removed. into_ptr is now available as an inherent method on all types that previously implemented this trait.

AsPyPointer now unsafe trait

Click to expand

The trait AsPyPointer is now unsafe trait, meaning any external implementation of it must be marked as unsafe impl, and ensure that they uphold the invariant of returning valid pointers.

from 0.18.* to 0.19

Access to Python inside __traverse__ implementations are now forbidden

Click to expand

During __traverse__ implementations for Python's Garbage Collection it is forbidden to do anything other than visit the members of the #[pyclass] being traversed. This means making Python function calls or other API calls are forbidden.

Previous versions of PyO3 would allow access to Python (e.g. via Python::with_gil), which could cause the Python interpreter to crash or otherwise confuse the garbage collection algorithm.

Attempts to acquire the GIL will now panic. See #3165 for more detail.

use pyo3::prelude::*;

#[pyclass]
struct SomeClass {}

impl SomeClass {
    fn __traverse__(&self, pyo3::class::gc::PyVisit<'_>) -> Result<(), pyo3::class::gc::PyTraverseError>` {
        Python::with_gil(|| { /*...*/ })  // ERROR: this will panic
    }
}

Smarter anyhow::Error / eyre::Report conversion when inner error is "simple" PyErr

Click to expand

When converting from anyhow::Error or eyre::Report to PyErr, if the inner error is a "simple" PyErr (with no source error), then the inner error will be used directly as the PyErr instead of wrapping it in a new PyRuntimeError with the original information converted into a string.

#[cfg(feature = "anyhow")]
#[allow(dead_code)]
mod anyhow_only {
use pyo3::prelude::*;
use pyo3::exceptions::PyValueError;
#[pyfunction]
fn raise_err() -> anyhow::Result<()> {
    Err(PyValueError::new_err("original error message").into())
}

fn main() {
    Python::with_gil(|py| {
        let rs_func = wrap_pyfunction!(raise_err, py).unwrap();
        pyo3::py_run!(
            py,
            rs_func,
            r"
        try:
            rs_func()
        except Exception as e:
            print(repr(e))
        "
        );
    })
}
}

Before, the above code would have printed RuntimeError('ValueError: original error message'), which might be confusing.

After, the same code will print ValueError: original error message, which is more straightforward.

However, if the anyhow::Error or eyre::Report has a source, then the original exception will still be wrapped in a PyRuntimeError.

The deprecated Python::acquire_gil was removed and Python::with_gil must be used instead

Click to expand

While the API provided by Python::acquire_gil seems convenient, it is somewhat brittle as the design of the GIL token Python relies on proper nesting and panics if not used correctly, e.g.

#![allow(dead_code, deprecated)]
use pyo3::prelude::*;

#[pyclass]
struct SomeClass {}

struct ObjectAndGuard {
    object: Py<SomeClass>,
    guard: GILGuard,
}

impl ObjectAndGuard {
    fn new() -> Self {
        let guard = Python::acquire_gil();
        let object = Py::new(guard.python(), SomeClass {}).unwrap();

        Self { object, guard }
    }
}

let first = ObjectAndGuard::new();
let second = ObjectAndGuard::new();
// Panics because the guard within `second` is still alive.
drop(first);
drop(second);

The replacement is Python::with_gil which is more cumbersome but enforces the proper nesting by design, e.g.

#![allow(dead_code)]
use pyo3::prelude::*;

#[pyclass]
struct SomeClass {}

struct Object {
    object: Py<SomeClass>,
}

impl Object {
    fn new(py: Python<'_>) -> Self {
        let object = Py::new(py, SomeClass {}).unwrap();

        Self { object }
    }
}

// It either forces us to release the GIL before aquiring it again.
let first = Python::with_gil(|py| Object::new(py));
let second = Python::with_gil(|py| Object::new(py));
drop(first);
drop(second);

// Or it ensure releasing the inner lock before the outer one.
Python::with_gil(|py| {
    let first = Object::new(py);
    let second = Python::with_gil(|py| Object::new(py));
    drop(first);
    drop(second);
});

Furthermore, Python::acquire_gil provides ownership of a GILGuard which can be freely stored and passed around. This is usually not helpful as it may keep the lock held for a long time thereby blocking progress in other parts of the program. Due to the generative lifetime attached to the GIL token supplied by Python::with_gil, the problem is avoided as the GIL token can only be passed down the call chain. Often, this issue can also be avoided entirely as any GIL-bound reference &'py PyAny implies access to a GIL token Python<'py> via the PyAny::py method.

from 0.17.* to 0.18

Required arguments after Option<_> arguments will no longer be automatically inferred

Click to expand

In #[pyfunction] and #[pymethods], if a "required" function input such as i32 came after an Option<_> input, then the Option<_> would be implicitly treated as required. (All trailing Option<_> arguments were treated as optional with a default value of None).

Starting with PyO3 0.18, this is deprecated and a future PyO3 version will require a #[pyo3(signature = (...))] option to explicitly declare the programmer's intention.

Before, x in the below example would be required to be passed from Python code:

#![allow(dead_code)]
use pyo3::prelude::*;

#[pyfunction]
fn required_argument_after_option(x: Option<i32>, y: i32) {}

After, specify the intended Python signature explicitly:

#![allow(dead_code)]
use pyo3::prelude::*;

// If x really was intended to be required
#[pyfunction(signature = (x, y))]
fn required_argument_after_option_a(x: Option<i32>, y: i32) {}

// If x was intended to be optional, y needs a default too
#[pyfunction(signature = (x=None, y=0))]
fn required_argument_after_option_b(x: Option<i32>, y: i32) {}

__text_signature__ is now automatically generated for #[pyfunction] and #[pymethods]

Click to expand

The #[pyo3(text_signature = "...")] option was previously the only supported way to set the __text_signature__ attribute on generated Python functions.

PyO3 is now able to automatically populate __text_signature__ for all functions automatically based on their Rust signature (or the new #[pyo3(signature = (...))] option). These automatically-generated __text_signature__ values will currently only render ... for all default values. Many #[pyo3(text_signature = "...")] options can be removed from functions when updating to PyO3 0.18, however in cases with default values a manual implementation may still be preferred for now.

As examples:

use pyo3::prelude::*;

// The `text_signature` option here is no longer necessary, as PyO3 will automatically
// generate exactly the same value.
#[pyfunction(text_signature = "(a, b, c)")]
fn simple_function(a: i32, b: i32, c: i32) {}

// The `text_signature` still provides value here as of PyO3 0.18, because the automatically
// generated signature would be "(a, b=..., c=...)".
#[pyfunction(signature = (a, b = 1, c = 2), text_signature = "(a, b=1, c=2)")]
fn function_with_defaults(a: i32, b: i32, c: i32) {}

fn main() {
    Python::with_gil(|py| {
        let simple = wrap_pyfunction_bound!(simple_function, py).unwrap();
        assert_eq!(simple.getattr("__text_signature__").unwrap().to_string(), "(a, b, c)");
        let defaulted = wrap_pyfunction_bound!(function_with_defaults, py).unwrap();
        assert_eq!(defaulted.getattr("__text_signature__").unwrap().to_string(), "(a, b=1, c=2)");
    })
}

from 0.16.* to 0.17

Type checks have been changed for PyMapping and PySequence types

Click to expand

Previously the type checks for PyMapping and PySequence (implemented in PyTryFrom) used the Python C-API functions PyMapping_Check and PySequence_Check. Unfortunately these functions are not sufficient for distinguishing such types, leading to inconsistent behavior (see pyo3/pyo3#2072).

PyO3 0.17 changes these downcast checks to explicitly test if the type is a subclass of the corresponding abstract base class collections.abc.Mapping or collections.abc.Sequence. Note this requires calling into Python, which may incur a performance penalty over the previous method. If this performance penalty is a problem, you may be able to perform your own checks and use try_from_unchecked (unsafe).

Another side-effect is that a pyclass defined in Rust with PyO3 will need to be registered with the corresponding Python abstract base class for downcasting to succeed. PySequence::register and PyMapping:register have been added to make it easy to do this from Rust code. These are equivalent to calling collections.abc.Mapping.register(MappingPyClass) or collections.abc.Sequence.register(SequencePyClass) from Python.

For example, for a mapping class defined in Rust:

use pyo3::prelude::*;
use std::collections::HashMap;

#[pyclass(mapping)]
struct Mapping {
    index: HashMap<String, usize>,
}

#[pymethods]
impl Mapping {
    #[new]
    fn new(elements: Option<&PyList>) -> PyResult<Self> {
    // ...
    // truncated implementation of this mapping pyclass - basically a wrapper around a HashMap
}

You must register the class with collections.abc.Mapping before the downcast will work:

let m = Py::new(py, Mapping { index }).unwrap();
assert!(m.as_ref(py).downcast::<PyMapping>().is_err());
PyMapping::register::<Mapping>(py).unwrap();
assert!(m.as_ref(py).downcast::<PyMapping>().is_ok());

Note that this requirement may go away in the future when a pyclass is able to inherit from the abstract base class directly (see pyo3/pyo3#991).

The multiple-pymethods feature now requires Rust 1.62

Click to expand

Due to limitations in the inventory crate which the multiple-pymethods feature depends on, this feature now requires Rust 1.62. For more information see dtolnay/inventory#32.

Added impl IntoPy<Py<PyString>> for &str

Click to expand

This may cause inference errors.

Before:

use pyo3::prelude::*;

fn main() {
Python::with_gil(|py| {
    // Cannot infer either `Py<PyAny>` or `Py<PyString>`
    let _test = "test".into_py(py);
});
}

After, some type annotations may be necessary:

use pyo3::prelude::*;

fn main() {
Python::with_gil(|py| {
    let _test: Py<PyAny> = "test".into_py(py);
});
}

The pyproto feature is now disabled by default

Click to expand

In preparation for removing the deprecated #[pyproto] attribute macro in a future PyO3 version, it is now gated behind an opt-in feature flag. This also gives a slight saving to compile times for code which does not use the deprecated macro.

PyTypeObject trait has been deprecated

Click to expand

The PyTypeObject trait already was near-useless; almost all functionality was already on the PyTypeInfo trait, which PyTypeObject had a blanket implementation based upon. In PyO3 0.17 the final method, PyTypeObject::type_object was moved to PyTypeInfo::type_object.

To migrate, update trait bounds and imports from PyTypeObject to PyTypeInfo.

Before:

use pyo3::Python;
use pyo3::type_object::PyTypeObject;
use pyo3::types::PyType;

fn get_type_object<T: PyTypeObject>(py: Python<'_>) -> &PyType {
    T::type_object(py)
}

After

use pyo3::{Python, PyTypeInfo};
use pyo3::types::PyType;

fn get_type_object<T: PyTypeInfo>(py: Python<'_>) -> &PyType {
    T::type_object(py)
}

Python::with_gil(|py| { get_type_object::<pyo3::types::PyList>(py); });

impl<T, const N: usize> IntoPy<PyObject> for [T; N] now requires T: IntoPy rather than T: ToPyObject

Click to expand

If this leads to errors, simply implement IntoPy. Because pyclasses already implement IntoPy, you probably don't need to worry about this.

Each #[pymodule] can now only be initialized once per process

Click to expand

To make PyO3 modules sound in the presence of Python sub-interpreters, for now it has been necessary to explicitly disable the ability to initialize a #[pymodule] more than once in the same process. Attempting to do this will now raise an ImportError.

from 0.15.* to 0.16

Drop support for older technologies

Click to expand

PyO3 0.16 has increased minimum Rust version to 1.48 and minimum Python version to 3.7. This enables use of newer language features (enabling some of the other additions in 0.16) and simplifies maintenance of the project.

#[pyproto] has been deprecated

Click to expand

In PyO3 0.15, the #[pymethods] attribute macro gained support for implementing "magic methods" such as __str__ (aka "dunder" methods). This implementation was not quite finalized at the time, with a few edge cases to be decided upon. The existing #[pyproto] attribute macro was left untouched, because it covered these edge cases.

In PyO3 0.16, the #[pymethods] implementation has been completed and is now the preferred way to implement magic methods. To allow the PyO3 project to move forward, #[pyproto] has been deprecated (with expected removal in PyO3 0.18).

Migration from #[pyproto] to #[pymethods] is straightforward; copying the existing methods directly from the #[pyproto] trait implementation is all that is needed in most cases.

Before:

use pyo3::prelude::*;
use pyo3::class::{PyObjectProtocol, PyIterProtocol};
use pyo3::types::PyString;

#[pyclass]
struct MyClass {}

#[pyproto]
impl PyObjectProtocol for MyClass {
    fn __str__(&self) -> &'static [u8] {
        b"hello, world"
    }
}

#[pyproto]
impl PyIterProtocol for MyClass {
    fn __iter__(slf: PyRef<self>) -> PyResult<&PyAny> {
        PyString::new(slf.py(), "hello, world").iter()
    }
}

After

use pyo3::prelude::*;
use pyo3::types::PyString;

#[pyclass]
struct MyClass {}

#[pymethods]
impl MyClass {
    fn __str__(&self) -> &'static [u8] {
        b"hello, world"
    }

    fn __iter__(slf: PyRef<self>) -> PyResult<&PyAny> {
        PyString::new(slf.py(), "hello, world").iter()
    }
}

Removed PartialEq for object wrappers

Click to expand

The Python object wrappers Py and PyAny had implementations of PartialEq so that object_a == object_b would compare the Python objects for pointer equality, which corresponds to the is operator, not the == operator in Python. This has been removed in favor of a new method: use object_a.is(object_b). This also has the advantage of not requiring the same wrapper type for object_a and object_b; you can now directly compare a Py<T> with a &PyAny without having to convert.

To check for Python object equality (the Python == operator), use the new method eq().

Container magic methods now match Python behavior

Click to expand

In PyO3 0.15, __getitem__, __setitem__ and __delitem__ in #[pymethods] would generate only the mapping implementation for a #[pyclass]. To match the Python behavior, these methods now generate both the mapping and sequence implementations.

This means that classes implementing these #[pymethods] will now also be treated as sequences, same as a Python class would be. Small differences in behavior may result:

  • PyO3 will allow instances of these classes to be cast to PySequence as well as PyMapping.
  • Python will provide a default implementation of __iter__ (if the class did not have one) which repeatedly calls __getitem__ with integers (starting at 0) until an IndexError is raised.

To explain this in detail, consider the following Python class:

class ExampleContainer:

    def __len__(self):
        return 5

    def __getitem__(self, idx: int) -> int:
        if idx < 0 or idx > 5:
            raise IndexError()
        return idx

This class implements a Python sequence.

The __len__ and __getitem__ methods are also used to implement a Python mapping. In the Python C-API, these methods are not shared: the sequence __len__ and __getitem__ are defined by the sq_length and sq_item slots, and the mapping equivalents are mp_length and mp_subscript. There are similar distinctions for __setitem__ and __delitem__.

Because there is no such distinction from Python, implementing these methods will fill the mapping and sequence slots simultaneously. A Python class with __len__ implemented, for example, will have both the sq_length and mp_length slots filled.

The PyO3 behavior in 0.16 has been changed to be closer to this Python behavior by default.

wrap_pymodule! and wrap_pyfunction! now respect privacy correctly

Click to expand

Prior to PyO3 0.16 the wrap_pymodule! and wrap_pyfunction! macros could use modules and functions whose defining fn was not reachable according Rust privacy rules.

For example, the following code was legal before 0.16, but in 0.16 is rejected because the wrap_pymodule! macro cannot access the private_submodule function:

mod foo {
    use pyo3::prelude::*;

    #[pymodule]
    fn private_submodule(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
        Ok(())
    }
}

use pyo3::prelude::*;
use foo::*;

#[pymodule]
fn my_module(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
    m.add_wrapped(wrap_pymodule!(private_submodule))?;
    Ok(())
}

To fix it, make the private submodule visible, e.g. with pub or pub(crate).

mod foo {
    use pyo3::prelude::*;

    #[pymodule]
    pub(crate) fn private_submodule(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
        Ok(())
    }
}

use pyo3::prelude::*;
use pyo3::wrap_pymodule;
use foo::*;

#[pymodule]
fn my_module(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
    m.add_wrapped(wrap_pymodule!(private_submodule))?;
    Ok(())
}

from 0.14.* to 0.15

Changes in sequence indexing

Click to expand

For all types that take sequence indices (PyList, PyTuple and PySequence), the API has been made consistent to only take usize indices, for consistency with Rust's indexing conventions. Negative indices, which were only sporadically supported even in APIs that took isize, now aren't supported anywhere.

Further, the get_item methods now always return a PyResult instead of panicking on invalid indices. The Index trait has been implemented instead, and provides the same panic behavior as on Rust vectors.

Note that slice indices (accepted by PySequence::get_slice and other) still inherit the Python behavior of clamping the indices to the actual length, and not panicking/returning an error on out of range indices.

An additional advantage of using Rust's indexing conventions for these types is that these types can now also support Rust's indexing operators as part of a consistent API:

#![allow(deprecated)]
use pyo3::{Python, types::PyList};

Python::with_gil(|py| {
    let list = PyList::new(py, &[1, 2, 3]);
    assert_eq!(list[0..2].to_string(), "[1, 2]");
});

from 0.13.* to 0.14

auto-initialize feature is now opt-in

Click to expand

For projects embedding Python in Rust, PyO3 no longer automatically initializes a Python interpreter on the first call to Python::with_gil (or Python::acquire_gil) unless the auto-initialize feature is enabled.

New multiple-pymethods feature

Click to expand

#[pymethods] have been reworked with a simpler default implementation which removes the dependency on the inventory crate. This reduces dependencies and compile times for the majority of users.

The limitation of the new default implementation is that it cannot support multiple #[pymethods] blocks for the same #[pyclass]. If you need this functionality, you must enable the multiple-pymethods feature which will switch #[pymethods] to the inventory-based implementation.

Deprecated #[pyproto] methods

Click to expand

Some protocol (aka __dunder__) methods such as __bytes__ and __format__ have been possible to implement two ways in PyO3 for some time: via a #[pyproto] (e.g. PyObjectProtocol for the methods listed here), or by writing them directly in #[pymethods]. This is only true for a handful of the #[pyproto] methods (for technical reasons to do with the way PyO3 currently interacts with the Python C-API).

In the interest of having only one way to do things, the #[pyproto] forms of these methods have been deprecated.

To migrate just move the affected methods from a #[pyproto] to a #[pymethods] block.

Before:

use pyo3::prelude::*;
use pyo3::class::basic::PyObjectProtocol;

#[pyclass]
struct MyClass {}

#[pyproto]
impl PyObjectProtocol for MyClass {
    fn __bytes__(&self) -> &'static [u8] {
        b"hello, world"
    }
}

After:

use pyo3::prelude::*;

#[pyclass]
struct MyClass {}

#[pymethods]
impl MyClass {
    fn __bytes__(&self) -> &'static [u8] {
        b"hello, world"
    }
}

from 0.12.* to 0.13

Minimum Rust version increased to Rust 1.45

Click to expand

PyO3 0.13 makes use of new Rust language features stabilized between Rust 1.40 and Rust 1.45. If you are using a Rust compiler older than Rust 1.45, you will need to update your toolchain to be able to continue using PyO3.

Runtime changes to support the CPython limited API

Click to expand

In PyO3 0.13 support was added for compiling against the CPython limited API. This had a number of implications for all PyO3 users, described here.

The largest of these is that all types created from PyO3 are what CPython calls "heap" types. The specific implications of this are:

  • If you wish to subclass one of these types from Rust you must mark it #[pyclass(subclass)], as you would if you wished to allow subclassing it from Python code.
  • Type objects are now mutable - Python code can set attributes on them.
  • __module__ on types without #[pyclass(module="mymodule")] no longer returns builtins, it now raises AttributeError.

from 0.11.* to 0.12

PyErr has been reworked

Click to expand

In PyO3 0.12 the PyErr type has been re-implemented to be significantly more compatible with the standard Rust error handling ecosystem. Specifically PyErr now implements Error + Send + Sync, which are the standard traits used for error types.

While this has necessitated the removal of a number of APIs, the resulting PyErr type should now be much more easier to work with. The following sections list the changes in detail and how to migrate to the new APIs.

PyErr::new and PyErr::from_type now require Send + Sync for their argument

Click to expand

For most uses no change will be needed. If you are trying to construct PyErr from a value that is not Send + Sync, you will need to first create the Python object and then use PyErr::from_instance.

Similarly, any types which implemented PyErrArguments will now need to be Send + Sync.

PyErr's contents are now private

Click to expand

It is no longer possible to access the fields .ptype, .pvalue and .ptraceback of a PyErr. You should instead now use the new methods PyErr::ptype, PyErr::pvalue and PyErr::ptraceback.

PyErrValue and PyErr::from_value have been removed

Click to expand

As these were part the internals of PyErr which have been reworked, these APIs no longer exist.

If you used this API, it is recommended to use PyException::new_err (see the section on Exception types).

Into<PyResult<T>> for PyErr has been removed

Click to expand

This implementation was redundant. Just construct the Result::Err variant directly.

Before:

let result: PyResult<()> = PyErr::new::<TypeError, _>("error message").into();

After (also using the new reworked exception types; see the following section):

use pyo3::{PyResult, exceptions::PyTypeError};
let result: PyResult<()> = Err(PyTypeError::new_err("error message"));

Exception types have been reworked

Click to expand

Previously exception types were zero-sized marker types purely used to construct PyErr. In PyO3 0.12, these types have been replaced with full definitions and are usable in the same way as PyAny, PyDict etc. This makes it possible to interact with Python exception objects.

The new types also have names starting with the "Py" prefix. For example, before:

let err: PyErr = TypeError::py_err("error message");

After:

use pyo3::{PyErr, PyResult, Python, type_object::PyTypeObject};
use pyo3::exceptions::{PyBaseException, PyTypeError};
Python::with_gil(|py| -> PyResult<()> {
let err: PyErr = PyTypeError::new_err("error message");

// Uses Display for PyErr, new for PyO3 0.12
assert_eq!(err.to_string(), "TypeError: error message");

// Now possible to interact with exception instances, new for PyO3 0.12
let instance: &PyBaseException = err.instance(py);
assert_eq!(
    instance.getattr("__class__")?,
    PyTypeError::type_object(py).as_ref()
);
Ok(())
}).unwrap();

FromPy has been removed

Click to expand

To simplify the PyO3 conversion traits, the FromPy trait has been removed. Previously there were two ways to define the to-Python conversion for a type: FromPy<T> for PyObject and IntoPy<PyObject> for T.

Now there is only one way to define the conversion, IntoPy, so downstream crates may need to adjust accordingly.

Before:

use pyo3::prelude::*;
struct MyPyObjectWrapper(PyObject);

impl FromPy<MyPyObjectWrapper> for PyObject {
    fn from_py(other: MyPyObjectWrapper, _py: Python<'_>) -> Self {
        other.0
    }
}

After

use pyo3::prelude::*;
#[allow(dead_code)]
struct MyPyObjectWrapper(PyObject);

impl IntoPy<PyObject> for MyPyObjectWrapper {
    fn into_py(self, _py: Python<'_>) -> PyObject {
        self.0
    }
}

Similarly, code which was using the FromPy trait can be trivially rewritten to use IntoPy.

Before:

use pyo3::prelude::*;
Python::with_gil(|py| {
let obj = PyObject::from_py(1.234, py);
})

After:

use pyo3::prelude::*;
Python::with_gil(|py| {
let obj: PyObject = 1.234.into_py(py);
})

PyObject is now a type alias of Py<PyAny>

Click to expand

This should change very little from a usage perspective. If you implemented traits for both PyObject and Py<T>, you may find you can just remove the PyObject implementation.

AsPyRef has been removed

Click to expand

As PyObject has been changed to be just a type alias, the only remaining implementor of AsPyRef was Py<T>. This removed the need for a trait, so the AsPyRef::as_ref method has been moved to Py::as_ref.

This should require no code changes except removing use pyo3::AsPyRef for code which did not use pyo3::prelude::*.

Before:

use pyo3::{AsPyRef, Py, types::PyList};
pyo3::Python::with_gil(|py| {
let list_py: Py<PyList> = PyList::empty(py).into();
let list_ref: &PyList = list_py.as_ref(py);
})

After:

use pyo3::{Py, types::PyList};
pyo3::Python::with_gil(|py| {
let list_py: Py<PyList> = PyList::empty(py).into();
let list_ref: &PyList = list_py.as_ref(py);
})

from 0.10.* to 0.11

Stable Rust

Click to expand

PyO3 now supports the stable Rust toolchain. The minimum required version is 1.39.0.

#[pyclass] structs must now be Send or unsendable

Click to expand

Because #[pyclass] structs can be sent between threads by the Python interpreter, they must implement Send or declared as unsendable (by #[pyclass(unsendable)]). Note that unsendable is added in PyO3 0.11.1 and Send is always required in PyO3 0.11.0.

This may "break" some code which previously was accepted, even though it could be unsound. There can be two fixes:

  1. If you think that your #[pyclass] actually must be Sendable, then let's implement Send. A common, safer way is using thread-safe types. E.g., Arc instead of Rc, Mutex instead of RefCell, and Box<dyn Send + T> instead of Box<dyn T>.

    Before:

    use pyo3::prelude::*;
    use std::rc::Rc;
    use std::cell::RefCell;
    
    #[pyclass]
    struct NotThreadSafe {
        shared_bools: Rc<RefCell<Vec<bool>>>,
        closure: Box<dyn Fn()>,
    }

    After:

    #![allow(dead_code)]
    use pyo3::prelude::*;
    use std::sync::{Arc, Mutex};
    
    #[pyclass]
    struct ThreadSafe {
        shared_bools: Arc<Mutex<Vec<bool>>>,
        closure: Box<dyn Fn() + Send>,
    }

    In situations where you cannot change your #[pyclass] to automatically implement Send (e.g., when it contains a raw pointer), you can use unsafe impl Send. In such cases, care should be taken to ensure the struct is actually thread safe. See the Rustonomicon for more.

  2. If you think that your #[pyclass] should not be accessed by another thread, you can use unsendable flag. A class marked with unsendable panics when accessed by another thread, making it thread-safe to expose an unsendable object to the Python interpreter.

    Before:

    use pyo3::prelude::*;
    
    #[pyclass]
    struct Unsendable {
        pointers: Vec<*mut std::os::raw::c_char>,
    }

    After:

    #![allow(dead_code)]
    use pyo3::prelude::*;
    
    #[pyclass(unsendable)]
    struct Unsendable {
        pointers: Vec<*mut std::os::raw::c_char>,
    }

All PyObject and Py<T> methods now take Python as an argument

Click to expand

Previously, a few methods such as Object::get_refcnt did not take Python as an argument (to ensure that the Python GIL was held by the current thread). Technically, this was not sound. To migrate, just pass a py argument to any calls to these methods.

Before:

pyo3::Python::with_gil(|py| {
py.None().get_refcnt();
})

After:

pyo3::Python::with_gil(|py| {
py.None().get_refcnt(py);
})

from 0.9.* to 0.10

ObjectProtocol is removed

Click to expand

All methods are moved to PyAny. And since now all native types (e.g., PyList) implements Deref<Target=PyAny>, all you need to do is remove ObjectProtocol from your code. Or if you use ObjectProtocol by use pyo3::prelude::*, you have to do nothing.

Before:

use pyo3::ObjectProtocol;

pyo3::Python::with_gil(|py| {
let obj = py.eval("lambda: 'Hi :)'", None, None).unwrap();
let hi: &pyo3::types::PyString = obj.call0().unwrap().downcast().unwrap();
assert_eq!(hi.len().unwrap(), 5);
})

After:

pyo3::Python::with_gil(|py| {
let obj = py.eval("lambda: 'Hi :)'", None, None).unwrap();
let hi: &pyo3::types::PyString = obj.call0().unwrap().downcast().unwrap();
assert_eq!(hi.len().unwrap(), 5);
})

No #![feature(specialization)] in user code

Click to expand

While PyO3 itself still requires specialization and nightly Rust, now you don't have to use #![feature(specialization)] in your crate.

from 0.8.* to 0.9

#[new] interface

Click to expand

PyRawObject is now removed and our syntax for constructors has changed.

Before:

#[pyclass]
struct MyClass {}

#[pymethods]
impl MyClass {
    #[new]
    fn new(obj: &PyRawObject) {
        obj.init(MyClass {})
    }
}

After:

use pyo3::prelude::*;
#[pyclass]
struct MyClass {}

#[pymethods]
impl MyClass {
    #[new]
    fn new() -> Self {
        MyClass {}
    }
}

Basically you can return Self or Result<Self> directly. For more, see the constructor section of this guide.

PyCell

Click to expand

PyO3 0.9 introduces PyCell, which is a RefCell-like object wrapper for ensuring Rust's rules regarding aliasing of references are upheld. For more detail, see the Rust Book's section on Rust's rules of references

For #[pymethods] or #[pyfunction]s, your existing code should continue to work without any change. Python exceptions will automatically be raised when your functions are used in a way which breaks Rust's rules of references.

Here is an example.

use pyo3::prelude::*;

#[pyclass]
struct Names {
    names: Vec<String>,
}

#[pymethods]
impl Names {
    #[new]
    fn new() -> Self {
        Names { names: vec![] }
    }
    fn merge(&mut self, other: &mut Names) {
        self.names.append(&mut other.names)
    }
}
Python::with_gil(|py| {
    let names = Py::new(py, Names::new()).unwrap();
    pyo3::py_run!(py, names, r"
    try:
       names.merge(names)
       assert False, 'Unreachable'
    except RuntimeError as e:
       assert str(e) == 'Already borrowed'
    ");
})

Names has a merge method, which takes &mut self and another argument of type &mut Self. Given this #[pyclass], calling names.merge(names) in Python raises a PyBorrowMutError exception, since it requires two mutable borrows of names.

However, for #[pyproto] and some functions, you need to manually fix the code.

Object creation

In 0.8 object creation was done with PyRef::new and PyRefMut::new. In 0.9 these have both been removed. To upgrade code, please use PyCell::new instead. If you need PyRef or PyRefMut, just call .borrow() or .borrow_mut() on the newly-created PyCell.

Before:

use pyo3::prelude::*;
#[pyclass]
struct MyClass {}
Python::with_gil(|py| {
let obj_ref = PyRef::new(py, MyClass {}).unwrap();
})

After:

use pyo3::prelude::*;
#[pyclass]
struct MyClass {}
Python::with_gil(|py| {
let obj = PyCell::new(py, MyClass {}).unwrap();
let obj_ref = obj.borrow();
})

Object extraction

For PyClass types T, &T and &mut T no longer have FromPyObject implementations. Instead you should extract PyRef<T> or PyRefMut<T>, respectively. If T implements Clone, you can extract T itself. In addition, you can also extract &PyCell<T>, though you rarely need it.

Before:

let obj: &PyAny = create_obj();
let obj_ref: &MyClass = obj.extract().unwrap();
let obj_ref_mut: &mut MyClass = obj.extract().unwrap();

After:

use pyo3::prelude::*;
use pyo3::types::IntoPyDict;
#[pyclass] #[derive(Clone)] struct MyClass {}
#[pymethods] impl MyClass { #[new]fn new() -> Self { MyClass {} }}
Python::with_gil(|py| {
let typeobj = py.get_type::<MyClass>();
let d = [("c", typeobj)].into_py_dict(py);
let create_obj = || py.eval("c()", None, Some(d)).unwrap();
let obj: &PyAny = create_obj();
let obj_cell: &PyCell<MyClass> = obj.extract().unwrap();
let obj_cloned: MyClass = obj.extract().unwrap(); // extracted by cloning the object
{
    let obj_ref: PyRef<'_, MyClass> = obj.extract().unwrap();
    // we need to drop obj_ref before we can extract a PyRefMut due to Rust's rules of references
}
let obj_ref_mut: PyRefMut<'_, MyClass> = obj.extract().unwrap();
})

#[pyproto]

Most of the arguments to methods in #[pyproto] impls require a FromPyObject implementation. So if your protocol methods take &T or &mut T (where T: PyClass), please use PyRef or PyRefMut instead.

Before:

use pyo3::prelude::*;
use pyo3::class::PySequenceProtocol;
#[pyclass]
struct ByteSequence {
    elements: Vec<u8>,
}
#[pyproto]
impl PySequenceProtocol for ByteSequence {
    fn __concat__(&self, other: &Self) -> PyResult<Self> {
        let mut elements = self.elements.clone();
        elements.extend_from_slice(&other.elements);
        Ok(Self { elements })
    }
}

After:

use pyo3::prelude::*;
use pyo3::class::PySequenceProtocol;
#[pyclass]
struct ByteSequence {
    elements: Vec<u8>,
}
#[pyproto]
impl PySequenceProtocol for ByteSequence {
    fn __concat__(&self, other: PyRef<'p, Self>) -> PyResult<Self> {
        let mut elements = self.elements.clone();
        elements.extend_from_slice(&other.elements);
        Ok(Self { elements })
    }
}