Migrating from older PyO3 versions

This guide can help you upgrade code through breaking changes from one PyO3 version to the next. For a detailed list of all changes, see the CHANGELOG.

from 0.11.* to 0.12

PyErr has been reworked

In PyO3 0.12 the PyErr type has been re-implemented to be significantly more compatible with the standard Rust error handling ecosystem. Specificially PyErr now implements Error + Send + Sync, which are the standard traits used for error types.

While this has necessitated the removal of a number of APIs, the resulting PyErr type should now be much more easier to work with. The following sections list the changes in detail and how to migrate to the new APIs.

PyErr::new and PyErr::from_type now require Send + Sync for their argument

For most uses no change will be needed. If you are trying to construct PyErr from a value that is not Send + Sync, you will need to first create the Python object and then use PyErr::from_instance.

Similarly, any types which implemented PyErrArguments will now need to be Send + Sync.

PyErr's contents are now private

It is no longer possible to access the fields .ptype, .pvalue and .ptraceback of a PyErr. You should instead now use the new methods PyErr::ptype(), PyErr::pvalue() and PyErr::ptraceback().

PyErrValue and PyErr::from_value have been removed

As these were part the internals of PyErr which have been reworked, these APIs no longer exist.

If you used this API, it is recommended to use PyException::new_err (see the section on Exception types).

Into<PyResult<T>> for PyErr has been removed

This implementation was redundant. Just construct the Result::Err variant directly.

Before:

let result: PyResult<()> = PyErr::new::<TypeError, _>("error message").into();

After (also using the new reworked exception types; see the following section):


#![allow(unused)]
fn main() {
use pyo3::{PyErr, PyResult, exceptions::PyTypeError};
let result: PyResult<()> = Err(PyTypeError::new_err("error message"));
}

Exception types have been reworked

Previously exception types were zero-sized marker types purely used to construct PyErr. In PyO3 0.12, these types have been replaced with full definitions and are usable in the same way as PyAny, PyDict etc. This makes it possible to interact with Python exception objects.

The new types also have names starting with the "Py" prefix. For example, before:

let err: PyErr = TypeError::py_err("error message");

After:


#![allow(unused)]
fn main() {
use pyo3::{PyErr, PyResult, Python, type_object::PyTypeObject};
use pyo3::exceptions::{PyBaseException, PyTypeError};
Python::with_gil(|py| -> PyResult<()> {
let err: PyErr = PyTypeError::new_err("error message");

// Uses Display for PyErr, new for PyO3 0.12
assert_eq!(err.to_string(), "TypeError: error message");

// Now possible to interact with exception instances, new for PyO3 0.12
let instance: &PyBaseException = err.instance(py);
assert_eq!(instance.getattr("__class__")?, PyTypeError::type_object(py).as_ref());
Ok(())
}).unwrap();
}

FromPy has been removed

To simplify the PyO3 conversion traits, the FromPy trait has been removed. Previously there were two ways to define the to-Python conversion for a type: FromPy<T> for PyObject and IntoPy<PyObject> for T.

Now there is only one way to define the conversion, IntoPy, so downstream crates may need to adjust accordingly.

Before:

use pyo3::prelude::*;
struct MyPyObjectWrapper(PyObject);

impl FromPy<MyPyObjectWrapper> for PyObject {
    fn from_py(other: MyPyObjectWrapper, _py: Python) -> Self {
        other.0
    }
}

After


#![allow(unused)]
fn main() {
use pyo3::prelude::*;
struct MyPyObjectWrapper(PyObject);

impl IntoPy<PyObject> for MyPyObjectWrapper {
    fn into_py(self, _py: Python) -> PyObject {
        self.0
    }
}
}

Similarly, code which was using the FromPy trait can be trivially rewritten to use IntoPy.

Before:

use pyo3::prelude::*;
Python::with_gil(|py| {
let obj = PyObject::from_py(1.234, py);
})

After:


#![allow(unused)]
fn main() {
use pyo3::prelude::*;
Python::with_gil(|py| {
let obj: PyObject = 1.234.into_py(py);
})
}

PyObject is now a type alias of Py<PyAny>

This should change very little from a usage perspective. If you implemented traits for both PyObject and Py<T>, you may find you can just remove the PyObject implementation.

AsPyRef has been removed

As PyObject has been changed to be just a type alias, the only remaining implementor of AsPyRef was Py<T>. This removed the need for a trait, so the AsPyRef::as_ref method has been moved to Py::as_ref.

This should require no code changes except removing use pyo3::AsPyRef for code which did not use pyo3::prelude::*.

Before:

use pyo3::{AsPyRef, Py, types::PyList};
pyo3::Python::with_gil(|py| {
let list_py: Py<PyList> = PyList::empty(py).into();
let list_ref: &PyList = list_py.as_ref(py);
})

After:


#![allow(unused)]
fn main() {
use pyo3::{Py, types::PyList};
pyo3::Python::with_gil(|py| {
let list_py: Py<PyList> = PyList::empty(py).into();
let list_ref: &PyList = list_py.as_ref(py);
})
}

from 0.10.* to 0.11

Stable Rust

PyO3 now supports the stable Rust toolchain. The minimum required version is 1.39.0.

#[pyclass] structs must now be Send or unsendable

Because #[pyclass] structs can be sent between threads by the Python interpreter, they must implement Send or declared as unsendable (by #[pyclass(unsendable)]). Note that unsendable is added in PyO3 0.11.1 and Send is always required in PyO3 0.11.0.

This may "break" some code which previously was accepted, even though it could be unsound. There can be two fixes:

  1. If you think that your #[pyclass] actually must be Sendable, then let's implement Send. A common, safer way is using thread-safe types. E.g., Arc instead of Rc, Mutex instead of RefCell, and Box<dyn Send + T> instead of Box<dyn T>.

    Before:

    
    #![allow(unused)]
    fn main() {
    use pyo3::prelude::*;
    use std::rc::Rc;
    use std::cell::RefCell;
    
    #[pyclass]
    struct NotThreadSafe {
        shared_bools: Rc<RefCell<Vec<bool>>>,
        closure: Box<dyn Fn()>
    }
    }
    

    After:

    
    #![allow(unused)]
    fn main() {
    use pyo3::prelude::*;
    use std::sync::{Arc, Mutex};
    
    #[pyclass]
    struct ThreadSafe {
        shared_bools: Arc<Mutex<Vec<bool>>>,
        closure: Box<dyn Fn() + Send>
    }
    }
    

    In situations where you cannot change your #[pyclass] to automatically implement Send (e.g., when it contains a raw pointer), you can use unsafe impl Send. In such cases, care should be taken to ensure the struct is actually thread safe. See the Rustnomicon for more.

  2. If you think that your #[pyclass] should not be accessed by another thread, you can use unsendable flag. A class marked with unsendable panics when accessed by another thread, making it thread-safe to expose an unsendable object to the Python interpreter.

    Before:

    
    #![allow(unused)]
    fn main() {
    use pyo3::prelude::*;
    
    #[pyclass]
    struct Unsendable {
        pointers: Vec<*mut std::os::raw::c_char>,
    }
    }
    

    After:

    
    #![allow(unused)]
    fn main() {
    use pyo3::prelude::*;
    
    #[pyclass(unsendable)]
    struct Unsendable {
        pointers: Vec<*mut std::os::raw::c_char>,
    }
    }
    

All PyObject and Py<T> methods now take Python as an argument

Previously, a few methods such as Object::get_refcnt did not take Python as an argument (to ensure that the Python GIL was held by the current thread). Technically, this was not sound. To migrate, just pass a py argument to any calls to these methods.

Before:


#![allow(unused)]
fn main() {
use pyo3::prelude::*;

let gil = Python::acquire_gil();
let py = gil.python();

py.None().get_refcnt();
}

After:


#![allow(unused)]
fn main() {
use pyo3::prelude::*;

let gil = Python::acquire_gil();
let py = gil.python();

py.None().get_refcnt(py);
}

from 0.9.* to 0.10

ObjectProtocol is removed

All methods are moved to PyAny. And since now all native types (e.g., PyList) implements Deref<Target=PyAny>, all you need to do is remove ObjectProtocol from your code. Or if you use ObjectProtocol by use pyo3::prelude::*, you have to do nothing.

Before:


#![allow(unused)]
fn main() {
use pyo3::ObjectProtocol;

let gil = pyo3::Python::acquire_gil();
let obj = gil.python().eval("lambda: 'Hi :)'", None, None).unwrap();
let hi: &pyo3::types::PyString = obj.call0().unwrap().downcast().unwrap();
assert_eq!(hi.len().unwrap(), 5);
}

After:


#![allow(unused)]
fn main() {
let gil = pyo3::Python::acquire_gil();
let obj = gil.python().eval("lambda: 'Hi :)'", None, None).unwrap();
let hi: &pyo3::types::PyString = obj.call0().unwrap().downcast().unwrap();
assert_eq!(hi.len().unwrap(), 5);
}

No #![feature(specialization)] in user code

While PyO3 itself still requires specialization and nightly Rust, now you don't have to use #![feature(specialization)] in your crate.

from 0.8.* to 0.9

#[new] interface

PyRawObject is now removed and our syntax for constructors has changed.

Before:


#![allow(unused)]
fn main() {
#[pyclass]
struct MyClass {}

#[pymethods]
impl MyClass {
   #[new]
   fn new(obj: &PyRawObject) {
       obj.init(MyClass { })
   }
}
}

After:


#![allow(unused)]
fn main() {
use pyo3::prelude::*;
#[pyclass]
struct MyClass {}

#[pymethods]
impl MyClass {
   #[new]
   fn new() -> Self {
       MyClass {}
   }
}
}

Basically you can return Self or Result<Self> directly. For more, see the constructor section of this guide.

PyCell

PyO3 0.9 introduces PyCell, which is a RefCell-like object wrapper for ensuring Rust's rules regarding aliasing of references are upheld. For more detail, see the Rust Book's section on Rust's rules of references

For #[pymethods] or #[pyfunction]s, your existing code should continue to work without any change. Python exceptions will automatically be raised when your functions are used in a way which breaks Rust's rules of references.

Here is an example.


#![allow(unused)]
fn main() {
use pyo3::prelude::*;
#[pyclass]
struct Names {
    names: Vec<String>
}

#[pymethods]
impl Names {
    #[new]
    fn new() -> Self {
        Names { names: vec![] }
    }
    fn merge(&mut self, other: &mut Names) {
        self.names.append(&mut other.names)
    }
}
let gil = Python::acquire_gil();
let py = gil.python();
let names = PyCell::new(py, Names::new()).unwrap();
pyo3::py_run!(py, names, r"
try:
   names.merge(names)
   assert False, 'Unreachable'
except RuntimeError as e:
   assert str(e) == 'Already borrowed'
");
}

Names has a merge method, which takes &mut self and another argument of type &mut Self. Given this #[pyclass], calling names.merge(names) in Python raises a PyBorrowMutError exception, since it requires two mutable borrows of names.

However, for #[pyproto] and some functions, you need to manually fix the code.

Object creation

In 0.8 object creation was done with PyRef::new and PyRefMut::new. In 0.9 these have both been removed. To upgrade code, please use PyCell::new instead. If you need PyRef or PyRefMut, just call .borrow() or .borrow_mut() on the newly-created PyCell.

Before:


#![allow(unused)]
fn main() {
use pyo3::prelude::*;
#[pyclass]
struct MyClass {}
let gil = Python::acquire_gil();
let py = gil.python();
let obj_ref = PyRef::new(py, MyClass {}).unwrap();
}

After:


#![allow(unused)]
fn main() {
use pyo3::prelude::*;
#[pyclass]
struct MyClass {}
let gil = Python::acquire_gil();
let py = gil.python();
let obj = PyCell::new(py, MyClass {}).unwrap();
let obj_ref = obj.borrow();
}

Object extraction

For PyClass types T, &T and &mut T no longer have FromPyObject implementations. Instead you should extract PyRef<T> or PyRefMut<T>, respectively. If T implements Clone, you can extract T itself. In addition, you can also extract &PyCell<T>, though you rarely need it.

Before:

let obj: &PyAny = create_obj();
let obj_ref: &MyClass = obj.extract().unwrap();
let obj_ref_mut: &mut MyClass = obj.extract().unwrap();

After:


#![allow(unused)]
fn main() {
use pyo3::prelude::*;
use pyo3::types::IntoPyDict;
#[pyclass] #[derive(Clone)] struct MyClass {}
#[pymethods] impl MyClass { #[new]fn new() -> Self { MyClass {} }}
let gil = Python::acquire_gil();
let py = gil.python();
let typeobj = py.get_type::<MyClass>();
let d = [("c", typeobj)].into_py_dict(py);
let create_obj = || py.eval("c()", None, Some(d)).unwrap();
let obj: &PyAny = create_obj();
let obj_cell: &PyCell<MyClass> = obj.extract().unwrap();
let obj_cloned: MyClass = obj.extract().unwrap(); // extracted by cloning the object
{
    let obj_ref: PyRef<MyClass> = obj.extract().unwrap();
    // we need to drop obj_ref before we can extract a PyRefMut due to Rust's rules of references
}
let obj_ref_mut: PyRefMut<MyClass> = obj.extract().unwrap();
}

#[pyproto]

Most of the arguments to methods in #[pyproto] impls require a FromPyObject implementation. So if your protocol methods take &T or &mut T (where T: PyClass), please use PyRef or PyRefMut instead.

Before:


#![allow(unused)]
fn main() {
use pyo3::prelude::*;
use pyo3::class::PySequenceProtocol;
#[pyclass]
struct ByteSequence {
    elements: Vec<u8>,
}
#[pyproto]
impl PySequenceProtocol for ByteSequence {
    fn __concat__(&self, other: &Self) -> PyResult<Self> {
        let mut elements = self.elements.clone();
        elements.extend_from_slice(&other.elements);
        Ok(Self { elements })
    }
}
}

After:


#![allow(unused)]
fn main() {
use pyo3::prelude::*;
use pyo3::class::PySequenceProtocol;
#[pyclass]
struct ByteSequence {
    elements: Vec<u8>,
}
#[pyproto]
impl PySequenceProtocol for ByteSequence {
    fn __concat__(&self, other: PyRef<'p, Self>) -> PyResult<Self> {
        let mut elements = self.elements.clone();
        elements.extend_from_slice(&other.elements);
        Ok(Self { elements })
    }
}
}