Python Class
Python class generation is powered by unstable Procedural Macros and
Specialization and Const fn
features, so you need to turn on proc_macro and specialization features:
# #![allow(unused_variables)] #![feature(proc_macro, specialization, const_fn)] #fn main() { extern crate pyo3; #}
Define new class
To define python custom class, rust struct needs to be annotated with #[py::class] attribute.
# #![allow(unused_variables)] #fn main() { use pyo3::prelude::*; #[py::class] struct MyClass { num: i32, debug: bool, token: PyToken, } #}
The above example generates the following implementations for MyClass struct
impl PyTypeInfo for MyClass { ... }
impl PyTypeObject for MyClass { ... }
impl PyObjectWithToken for MyClass { ... }
impl ToPyObject for MyClass { ... }
impl IntoPyObject for MyClass { ... }
impl ToPyPointer for MyClass { ... }
Following implementations PyObjectWithToken, ToPyObject, IntoPyObject, ToPyPointer
are generated only if struct contains PyToken attribute.
PyToken instance available only in py.init method.
TODO - continue
py::class macro
Python class generation is powered by Procedural Macros.
To define python custom class, rust struct needs to be annotated with #[py::class] attribute.
py::class macro accepts following parameters:
name=XXX- customize class name visible to python code. By default struct name is used as a class name.freelist=XXX-freelistparameter add support of free allocation list to custom class. The performance improvement applies to types that are often created and deleted in a row, so that they can benefit from a freelist.XXXis a number of items for free list.gc- adds support for python garbage collector. classes that build withgcparameter participate in python garbage collector. If custom class contains references to other python object that can be collectorPyGCProtocoltrait has to be implemented.weakref- adds support for python weak referencesbase=BaseType- use custom base class. BaseType is type which is implementsPyTypeInfotrait.subclass- adds subclass support so that Python classes can inherit from this classdict- adds__dict__support, the instances of this type have a dictionary containing instance variables
Constructor
By default it is not possible to create instance of custom class from python code.
To declare constructor, you need to define class method and annotate it with #[new]
attribute. Only python __new__ method can be specified, __init__ is not available.
# #![allow(unused_variables)] #fn main() { #[py::methods] impl MyClass { #[new] fn __new__(obj: &PyRawObject, ...) -> PyResult<()> { obj.init(|token| { MyClass { num: 10, debug: false, token: token } }) } } #}
Some rules of new method
- If no method marked with
#[new]is declared, object instances can only be created from Rust, but not from Python. - The first parameter is the raw object, custom
newmethod must initialize object with value of struct usinginitmethod. Type of the object may be the type object of a derived class declared in Python. - The first parameter implicitly has type
&PyRawObject. - For details on
parameter-list, see the documentation ofMethod argumentssection. - The return type must be
PyResult<T>for someTthat implementsIntoPyObject. Usually,Twill beMyType.
Inheritance
By default PyObject is used as default base class. To override default base class
base parameter for py::class needs to be used. Value is full path to base class.
__new__ method accepts PyRawObject object. obj instance must be initialized
with value of custom class struct. Subclass must call parent's __new__ method.
# #![allow(unused_variables)] #fn main() { #[py::class] struct BaseClass { val1: usize } #[py::methods] impl BaseClass { #[new] fn __new__(obj: &PyRawObject) -> PyResult<()> { obj.init(|t| BaseClass{val1: 10}) } pub fn method(&self) -> PyResult<() { Ok(()) } } #[py::class(base=BaseClass)] struct SubClass { val2: usize } #[py::methods] impl SubClass { #[new] fn __new__(obj: &PyRawObject) -> PyResult<()> { obj.init(|t| SubClass{val2: 10}) BaseClass::__new__(obj) } fn method2(&self) -> PyResult<()> { self.get_base().method() } } #}
ObjectProtocol trait provides get_base() method. It returns reference to instance of
base class.
Object properties
Descriptor methods can be defined in
#[py::methods] impl block only and has to be annotated with #[getter] or [setter]
attributes. i.e.
# #![allow(unused_variables)] #fn main() { #[py::methods] impl MyClass { #[getter] fn num(&self) -> PyResult<i32> { Ok(self.num) } } #}
Getter or setter function's name is used as property name by default. There are several ways how to override name.
If function name starts with get_ or set_ for getter or setter respectively.
Descriptor name becomes function name with prefix removed. This is useful in case os
rust's special keywords like type.
# #![allow(unused_variables)] #fn main() { #[py::methods] impl MyClass { #[getter] fn get_num(&self) -> PyResult<i32> { Ok(self.num) } #[setter] fn set_num(&mut self, value: i32) -> PyResult<()> { self.num = value Ok(()) } } #}
In this case property num is defined. And it is available from python code as self.num.
Also both #[getter] and #[setter] attributes accepts one parameter.
If parameter is specified, it is used and property name. i.e.
# #![allow(unused_variables)] #fn main() { #[py::methods] impl MyClass { #[getter(number)] fn num(&self) -> PyResult<i32> { Ok(self.num) } #[setter(number)] fn set_num(&mut self, value: i32) -> PyResult<()> { self.num = value Ok(()) } } #}
In this case property number is defined. And it is available from python code as self.number.
For simple cases you can also define getters and setters in your Rust struct field definition, for example:
# #![allow(unused_variables)] #fn main() { #[py:class] struct MyClass { #[prop(get, set)] num: i32 } #}
Then it is available from Python code as self.num.
Instance methods
To define python compatible method, impl block for struct has to be annotated
with #[py::methods] attribute. pyo3 library generates python compatible
wrappers for all functions in this block with some variations, like descriptors,
class method static methods, etc.
# #![allow(unused_variables)] #fn main() { #[py::methods] impl MyClass { fn method1(&self) -> PyResult<i32> { Ok(10) } fn set_method(&mut self, value: i32) -> PyResult<()> { self.num = value Ok(()) } } #}
Calls to this methods protected by GIL, &self or &mut self can be used.
The return type must be PyResult<T> for some T that implements IntoPyObject.
Python parameter can be specified as part of method signature, in this case py argument
get injected by method wrapper. i.e
# #![allow(unused_variables)] #fn main() { #[py::methods] impl MyClass { fn method2(&self, py: Python) -> PyResult<i32> { Ok(10) } } #}
From python perspective method2, in above example, does not accept any arguments.
Class methods
To specify class method for custom class, method needs to be annotated
with#[classmethod] attribute.
# #![allow(unused_variables)] #fn main() { #[py::methods] impl MyClass { #[classmethod] fn cls_method(cls: &PyType) -> PyResult<i32> { Ok(10) } } #}
Declares a class method callable from Python.
- The first parameter is the type object of the class on which the method is called. This may be the type object of a derived class.
- The first parameter implicitly has type
&PyType. - For details on
parameter-list, see the documentation ofMethod argumentssection. - The return type must be
PyResult<T>for someTthat implementsIntoPyObject.
Static methods
To specify class method for custom class, method needs to be annotated
with #[staticmethod] attribute. The return type must be PyResult<T>
for some T that implements IntoPyObject.
# #![allow(unused_variables)] #fn main() { #[py::methods] impl MyClass { #[staticmethod] fn static_method(param1: i32, param2: &str) -> PyResult<i32> { Ok(10) } } #}
Callable object
To specify custom __call__ method for custom class, call method needs to be annotated
with #[call] attribute. Arguments of the method are specified same as for instance method.
# #![allow(unused_variables)] #fn main() { #[py::methods] impl MyClass { #[call] #[args(args="*")] fn __call__(&self, args: &PyTuple) -> PyResult<i32> { println!("MyCLS has been called"); Ok(self.num) } } #}
Method arguments
By default pyo3 library uses function signature to determine which arguments are required.
Then it scans incoming args parameter and then incoming kwargs parameter. If it can not
find all required parameters, it raises TypeError exception.
It is possible to override default behavior with #[args(...)] attribute. args attribute
accept comma separated list of parameters in form attr_name="default value". Each parameter
has to match method parameter by name.
Each parameter could one of following type:
- "*": var arguments separator, each parameter defined after "*" is keyword only parameters.
corresponds to python's
def meth(*, arg1.., arg2=..) - args="*": "args" is var args, corresponds to python's
def meth(*args). Type ofargsparameter has to be&PyTuple. - kwargs="**": "kwargs" is keyword arguments, corresponds to python's
def meth(**kwargs). Type ofkwargsparameter has to beOption<&PyDict>. - arg="Value": arguments with default value. corresponds to python's
def meth(arg=Value). ifargargument is defined after var arguments it is treated as keyword argument. Note thatValuehas to be valid rust code, pyo3 just inserts it into generated code unmodified.
Example:
# #![allow(unused_variables)] #fn main() { #[py::methods] impl MyClass { #[args(arg1=true, args="*", arg2=10, kwargs="**")] fn method(&self, arg1: bool, args: &PyTuple, arg2: i32, kwargs: Option<&PyDict>) -> PyResult<i32> { Ok(1) } } #}
Class customizations
Python object model defines several protocols for different object behavior,
like sequence, mapping or number protocols. pyo3 library defines separate trait for each
of them. To provide specific python object behavior you need to implement specific trait
for your struct. Important note, each protocol implementation block has to be annotated
with #[py::proto] attribute.
Basic object customization
PyObjectProtocol trait provide several basic customizations.
Attribute access
To customize object attribute access define following methods:
fn __getattr__(&self, name: FromPyObject) -> PyResult<impl IntoPyObject>fn __setattr__(&mut self, name: FromPyObject, value: FromPyObject) -> PyResult<()>fn __delattr__(&mut self, name: FromPyObject) -> PyResult<()>
Each methods corresponds to python's self.attr, self.attr = value and del self.attr code.
String Conversions
-
fn __repr__(&self) -> PyResult<impl ToPyObject<ObjectType=PyString>> -
fn __str__(&self) -> PyResult<impl ToPyObject<ObjectType=PyString>>Possible return types for
__str__and__repr__arePyResult<String>orPyResult<PyString>. In Python 2.7, Unicode strings returned by__str__and__repr__will be converted to byte strings by the Python runtime, which results in an exception if the string contains non-ASCII characters. -
fn __bytes__(&self) -> PyResult<PyBytes>On Python 3.x, provides the conversion to
bytes. On Python 2.7,__bytes__is allowed but has no effect. -
fn __unicode__(&self) -> PyResult<PyUnicode>On Python 2.7, provides the conversion to
unicode. On Python 3.x,__unicode__is allowed but has no effect. -
fn __format__(&self, format_spec: &str) -> PyResult<impl ToPyObject<ObjectType=PyString>>Special method that is used by the
format()builtin and thestr.format()method. Possible return types arePyResult<String>orPyResult<PyString>.
Comparison operators
-
fn __richcmp__(&self, other: impl FromPyObject, op: CompareOp) -> PyResult<impl ToPyObject>Overloads Python comparison operations (
==,!=,<,<=,>, and>=). Theopargument indicates the comparison operation being performed. The return type will normally bePyResult<bool>, but any Python object can be returned. Ifotheris not of the type specified in the signature, the generated code will automaticallyreturn NotImplemented. -
fn __hash__(&self) -> PyResult<impl PrimInt>Objects that compare equal must have the same hash value. The return type must be
PyResult<T>whereTis one of Rust's primitive integer types.
Other methods
-
fn __bool__(&self) -> PyResult<bool>Determines the "truthyness" of the object. This method works for both python 3 and python 2, even on Python 2.7 where the Python spelling was
__nonzero__.
Garbage Collector Integration
If your type owns references to other python objects, you will need to
integrate with Python's garbage collector so that the GC is aware of
those references.
To do this, implement PyGCProtocol trait for your struct.
It includes two methods __traverse__ and __clear__.
These correspond to the slots tp_traverse and tp_clear in the Python C API.
__traverse__ must call visit.call() for each reference to another python object.
__clear__ must clear out any mutable references to other python objects
(thus breaking reference cycles). Immutable references do not have to be cleared,
as every cycle must contain at least one mutable reference.
Example:
# #![allow(unused_variables)] #![feature(proc_macro, specialization)] #fn main() { extern crate pyo3; use pyo3::{py, PyObject, PyGCProtocol, PyVisit, PyTraverseError}; #[py::class] struct ClassWithGCSupport { obj: Option<PyObject>, } #[py::proto] impl PyGCProtocol for ClassWithGCSupport { fn __traverse__(&self, visit: PyVisit) -> Result<(), PyTraverseError> { if let Some(ref obj) = self.obj { visit.call(obj)? } Ok(()) } fn __clear__(&mut self) { if let Some(obj) = self.obj.take() { // Release reference, this decrements ref counter. self.py().release(obj); } } } #}
Special protocol trait implementation has to be annotated with #[py::proto] attribute.
It is also possible to enable gc for custom class using gc parameter for py::class annotation.
i.e. #[py::class(gc)]. In that case instances of custom class participate in python garbage
collector, and it is possible to track them with gc module methods.
Iterator Types
Iterators can be defined using the
PyIterProtocol trait.
It includes two methods __iter__ and __next__:
fn __iter__(&mut self) -> PyResult<impl IntoPyObject>fn __next__(&mut self) -> PyResult<Option<impl IntoPyObject>>
Returning Ok(None) from __next__ indicates that that there are no further items.
Example:
#![feature(proc_macro, specialization)] extern crate pyo3; use pyo3::{py, PyObject, PyResult, PyIterProtocol}; #[py::class] struct MyIterator { iter: Box<Iterator<Item=PyObject> + Send> } #[py::proto] impl PyIterProtocol { fn __iter__(&mut self) -> PyResult<PyObject> { Ok(self.into()) } fn __next__(&mut self) -> PyResult<Option<PyObject>> { Ok(self.iter.next()) } } # fn main() {}