Appendix B: Migrating from older PyO3 versions
This guide can help you upgrade code through breaking changes from one PyO3 version to the next. For a detailed list of all changes, see CHANGELOG.md
from 0.9.* to 0.10
ObjectProtocol
is removed
All methods are moved to PyAny
.
And since now all native types (e.g., PyList
) implements Deref<Target=PyAny>
,
all you need to do is remove ObjectProtocol
from your code.
Or if you use ObjectProtocol
by use pyo3::prelude::*
, you have to do nothing.
Before:
#![allow(unused_variables)] fn main() { use pyo3::ObjectProtocol; let gil = pyo3::Python::acquire_gil(); let obj = gil.python().eval("lambda: 'Hi :)'", None, None).unwrap(); let hi: &pyo3::types::PyString = obj.call0().unwrap().downcast().unwrap(); assert_eq!(hi.len().unwrap(), 5); }
After:
#![allow(unused_variables)] fn main() { let gil = pyo3::Python::acquire_gil(); let obj = gil.python().eval("lambda: 'Hi :)'", None, None).unwrap(); let hi: &pyo3::types::PyString = obj.call0().unwrap().downcast().unwrap(); assert_eq!(hi.len().unwrap(), 5); }
No #![feature(specialization)]
in user code
While PyO3 itself still requires specialization and nightly Rust,
now you don't have to use #![feature(specialization)]
in your crate.
from 0.8.* to 0.9
#[new]
interface
PyRawObject
is now removed and our syntax for constructors has changed.
Before:
#![allow(unused_variables)] fn main() { #[pyclass] struct MyClass {} #[pymethods] impl MyClass { #[new] fn new(obj: &PyRawObject) { obj.init(MyClass { }) } } }
After:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass {} #[pymethods] impl MyClass { #[new] fn new() -> Self { MyClass {} } } }
Basically you can return Self
or Result<Self>
directly.
For more, see the constructor section of this guide.
PyCell
PyO3 0.9 introduces PyCell
, which is a RefCell
-like object wrapper
for ensuring Rust's rules regarding aliasing of references are upheld.
For more detail, see the
Rust Book's section on Rust's rules of references
For #[pymethods]
or #[pyfunction]
s, your existing code should continue to work without any change.
Python exceptions will automatically be raised when your functions are used in a way which breaks Rust's
rules of references.
Here is an example.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct Names { names: Vec<String> } #[pymethods] impl Names { #[new] fn new() -> Self { Names { names: vec![] } } fn merge(&mut self, other: &mut Names) { self.names.append(&mut other.names) } } let gil = Python::acquire_gil(); let py = gil.python(); let names = PyCell::new(py, Names::new()).unwrap(); let borrow_mut_err = py.get_type::<pyo3::pycell::PyBorrowMutError>(); pyo3::py_run!(py, names borrow_mut_err, r" try: names.merge(names) assert False, 'Unreachable' except RuntimeError as e: isinstance(e, borrow_mut_err) "); }
Names
has a merge
method, which takes &mut self
and another argument of type &mut Self
.
Given this #[pyclass]
, calling names.merge(names)
in Python raises
a PyBorrowMutError
exception, since it requires two mutable borrows of names
.
However, for #[pyproto]
and some functions, you need to manually fix the code.
Object creation
In 0.8 object creation was done with PyRef::new
and PyRefMut::new
.
In 0.9 these have both been removed.
To upgrade code, please use
PyCell::new
instead.
If you need PyRef
or PyRefMut
, just call .borrow()
or .borrow_mut()
on the newly-created PyCell
.
Before:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass {} let gil = Python::acquire_gil(); let py = gil.python(); let obj_ref = PyRef::new(py, MyClass {}).unwrap(); }
After:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass {} let gil = Python::acquire_gil(); let py = gil.python(); let obj = PyCell::new(py, MyClass {}).unwrap(); let obj_ref = obj.borrow(); }
Object extraction
For PyClass
types T
, &T
and &mut T
no longer have FromPyObject
implementations.
Instead you should extract PyRef<T>
or PyRefMut<T>
, respectively.
If T
implements Clone
, you can extract T
itself.
In addition, you can also extract &PyCell<T>
, though you rarely need it.
Before:
let obj: &PyAny = create_obj();
let obj_ref: &MyClass = obj.extract().unwrap();
let obj_ref_mut: &mut MyClass = obj.extract().unwrap();
After:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; use pyo3::types::IntoPyDict; #[pyclass] #[derive(Clone)] struct MyClass {} #[pymethods] impl MyClass { #[new]fn new() -> Self { MyClass {} }} let gil = Python::acquire_gil(); let py = gil.python(); let typeobj = py.get_type::<MyClass>(); let d = [("c", typeobj)].into_py_dict(py); let create_obj = || py.eval("c()", None, Some(d)).unwrap(); let obj: &PyAny = create_obj(); let obj_cell: &PyCell<MyClass> = obj.extract().unwrap(); let obj_cloned: MyClass = obj.extract().unwrap(); // extracted by cloning the object { let obj_ref: PyRef<MyClass> = obj.extract().unwrap(); // we need to drop obj_ref before we can extract a PyRefMut due to Rust's rules of references } let obj_ref_mut: PyRefMut<MyClass> = obj.extract().unwrap(); }
#[pyproto]
Most of the arguments to methods in #[pyproto]
impls require a
FromPyObject
implementation.
So if your protocol methods take &T
or &mut T
(where T: PyClass
),
please use PyRef
or PyRefMut
instead.
Before:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; use pyo3::class::PySequenceProtocol; #[pyclass] struct ByteSequence { elements: Vec<u8>, } #[pyproto] impl PySequenceProtocol for ByteSequence { fn __concat__(&self, other: &Self) -> PyResult<Self> { let mut elements = self.elements.clone(); elements.extend_from_slice(&other.elements); Ok(Self { elements }) } } }
After:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; use pyo3::class::PySequenceProtocol; #[pyclass] struct ByteSequence { elements: Vec<u8>, } #[pyproto] impl PySequenceProtocol for ByteSequence { fn __concat__(&self, other: PyRef<'p, Self>) -> PyResult<Self> { let mut elements = self.elements.clone(); elements.extend_from_slice(&other.elements); Ok(Self { elements }) } } }