Python Classes
Defining a new class
To define a custom Python class, a Rust struct needs to be annotated with the
#[pyclass]
attribute.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { num: i32, debug: bool, } }
The above example generates implementations for PyTypeInfo
, PyTypeObject
,
and PyClass
for MyClass
.
If you curious what #[pyclass]
generates, see How methods are implemented section.
Adding the class to a module
Custom Python classes can then be added to a module using add_class()
.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { num: i32, debug: bool, } #[pymodule] fn mymodule(_py: Python, m: &PyModule) -> PyResult<()> { m.add_class::<MyClass>()?; Ok(()) } }
PyCell and interior mutability
You sometimes need to convert your pyclass
into a Python object and access it
from Rust code (e.g., for testing it).
PyCell
is the primary interface for that.
PyCell<T: PyClass>
is always allocated in the Python heap, so Rust doesn't have ownership of it.
In other words, Rust code can only extract a &PyCell<T>
, not a PyCell<T>
.
Thus, to mutate data behind &PyCell
safely, PyO3 employs the
Interior Mutability Pattern
like RefCell
.
Users who are familiar with RefCell
can use PyCell
just like RefCell
.
For users who are not very familiar with RefCell
, here is a reminder of Rust's rules of borrowing:
- At any given time, you can have either (but not both of) one mutable reference or any number of immutable references.
- References must always be valid.
PyCell
, like RefCell
, ensures these borrowing rules by tracking references at runtime.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; use pyo3::types::PyDict; #[pyclass] struct MyClass { #[pyo3(get)] num: i32, debug: bool, } let gil = Python::acquire_gil(); let py = gil.python(); let obj = PyCell::new(py, MyClass { num: 3, debug: true }).unwrap(); { let obj_ref = obj.borrow(); // Get PyRef assert_eq!(obj_ref.num, 3); // You cannot get PyRefMut unless all PyRefs are dropped assert!(obj.try_borrow_mut().is_err()); } { let mut obj_mut = obj.borrow_mut(); // Get PyRefMut obj_mut.num = 5; // You cannot get any other refs until the PyRefMut is dropped assert!(obj.try_borrow().is_err()); assert!(obj.try_borrow_mut().is_err()); } // You can convert `&PyCell` to a Python object pyo3::py_run!(py, obj, "assert obj.num == 5") }
&PyCell<T>
is bounded by the same lifetime as a GILGuard
.
To make the object longer lived (for example, to store it in a struct on the
Rust side), you can use Py<T>
, which stores an object longer than the GIL
lifetime, and therefore needs a Python<'_>
token to access.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { num: i32, } fn return_myclass() -> Py<MyClass> { let gil = Python::acquire_gil(); let py = gil.python(); Py::new(py, MyClass { num: 1 }).unwrap() } let gil = Python::acquire_gil(); let obj = return_myclass(); let cell = obj.as_ref(gil.python()); // AsPyRef::as_ref returns &PyCell let obj_ref = cell.borrow(); // Get PyRef<T> assert_eq!(obj_ref.num, 1); }
Customizing the class
The #[pyclass]
macro accepts the following parameters:
name=XXX
- Set the class name shown in Python code. By default, the struct name is used as the class name.freelist=XXX
- Thefreelist
parameter adds support of free allocation list to custom class. The performance improvement applies to types that are often created and deleted in a row, so that they can benefit from a freelist.XXX
is a number of items for the free list.gc
- Classes with thegc
parameter participate in Python garbage collection. If a custom class contains references to other Python objects that can be collected, thePyGCProtocol
trait has to be implemented.weakref
- Adds support for Python weak references.extends=BaseType
- Use a custom base class. The baseBaseType
must implementPyTypeInfo
.subclass
- Allows Python classes to inherit from this class.dict
- Adds__dict__
support, so that the instances of this type have a dictionary containing arbitrary instance variables.module="XXX"
- Set the name of the module the class will be shown as defined in. If not given, the class will be a virtual member of thebuiltins
module.
Constructor
By default it is not possible to create an instance of a custom class from Python code.
To declare a constructor, you need to define a method and annotate it with the #[new]
attribute. Only Python's __new__
method can be specified, __init__
is not available.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { num: i32, } #[pymethods] impl MyClass { #[new] fn new(num: i32) -> Self { MyClass { num } } } }
If no method marked with #[new]
is declared, object instances can only be
created from Rust, but not from Python.
For arguments, see the Method arguments
section below.
Return type
Generally, #[new]
method have to return T: Into<PyClassInitializer<Self>>
or
PyResult<T> where T: Into<PyClassInitializer<Self>>
.
For constructors that may fail, you should wrap the return type in a PyResult as well. Consult the table below to determine which type your constructor should return:
Cannot fail | May fail | |
---|---|---|
No inheritance | T | PyResult<T> |
Inheritance(T Inherits U) | (T, U) | PyResult<(T, U)> |
Inheritance(General Case) | PyClassInitializer<T> | PyResult<PyClassInitializer<T>> |
Inheritance
By default, PyAny
is used as the base class. To override this default,
use the extends
parameter for pyclass
with the full path to the base class.
For convenience, (T, U)
implements Into<PyClassInitializer<T>>
where U
is the
baseclass of T
.
But for more deeply nested inheritance, you have to return PyClassInitializer<T>
explicitly.
To get a parent class from a child, use PyRef
instead of &self
for methods,
or PyRefMut
instead of &mut self
.
Then you can access a parent class by self_.as_ref()
as &Self::BaseClass
,
or by self_.into_super()
as PyRef<Self::BaseClass>
.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct BaseClass { val1: usize, } #[pymethods] impl BaseClass { #[new] fn new() -> Self { BaseClass { val1: 10 } } pub fn method(&self) -> PyResult<usize> { Ok(self.val1) } } #[pyclass(extends=BaseClass)] struct SubClass { val2: usize, } #[pymethods] impl SubClass { #[new] fn new() -> (Self, BaseClass) { (SubClass { val2: 15 }, BaseClass::new()) } fn method2(self_: PyRef<Self>) -> PyResult<usize> { let super_ = self_.as_ref(); // Get &BaseClass super_.method().map(|x| x * self_.val2) } } #[pyclass(extends=SubClass)] struct SubSubClass { val3: usize, } #[pymethods] impl SubSubClass { #[new] fn new() -> PyClassInitializer<Self> { PyClassInitializer::from(SubClass::new()) .add_subclass(SubSubClass{val3: 20}) } fn method3(self_: PyRef<Self>) -> PyResult<usize> { let v = self_.val3; let super_ = self_.into_super(); // Get PyRef<SubClass> SubClass::method2(super_).map(|x| x * v) } } let gil = Python::acquire_gil(); let py = gil.python(); let subsub = pyo3::PyCell::new(py, SubSubClass::new()).unwrap(); pyo3::py_run!(py, subsub, "assert subsub.method3() == 3000") }
You can also inherit native types such as PyDict
, if they implement
PySizedLayout
.
However, because of some technical problems, we don't currently provide safe upcasting methods for types that inherit native types. Even in such cases, you can unsafely get a base class by raw pointer conversion.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; use pyo3::types::PyDict; use pyo3::{AsPyPointer, PyNativeType}; use std::collections::HashMap; #[pyclass(extends=PyDict)] #[derive(Default)] struct DictWithCounter { counter: HashMap<String, usize>, } #[pymethods] impl DictWithCounter { #[new] fn new() -> Self { Self::default() } fn set(mut self_: PyRefMut<Self>, key: String, value: &PyAny) -> PyResult<()> { self_.counter.entry(key.clone()).or_insert(0); let py = self_.py(); let dict: &PyDict = unsafe { py.from_borrowed_ptr_or_err(self_.as_ptr())? }; dict.set_item(key, value) } } let gil = Python::acquire_gil(); let py = gil.python(); let cnt = pyo3::PyCell::new(py, DictWithCounter::new()).unwrap(); pyo3::py_run!(py, cnt, "cnt.set('abc', 10); assert cnt['abc'] == 10") }
If SubClass
does not provide a baseclass initialization, the compilation fails.
# use pyo3::prelude::*;
#[pyclass]
struct BaseClass {
val1: usize,
}
#[pyclass(extends=BaseClass)]
struct SubClass {
val2: usize,
}
#[pymethods]
impl SubClass {
#[new]
fn new() -> Self {
SubClass { val2: 15 }
}
}
Object properties
Property descriptor methods can be defined in a #[pymethods]
impl
block only and have to be
annotated with #[getter]
and #[setter]
attributes. For example:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { num: i32, } #[pymethods] impl MyClass { #[getter] fn num(&self) -> PyResult<i32> { Ok(self.num) } } }
A getter or setter's function name is used as the property name by default. There are several ways how to override the name.
If a function name starts with get_
or set_
for getter or setter respectively,
the descriptor name becomes the function name with this prefix removed. This is also useful in case of
Rust keywords like type
(raw identifiers
can be used since Rust 2018).
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { num: i32, } #[pymethods] impl MyClass { #[getter] fn get_num(&self) -> PyResult<i32> { Ok(self.num) } #[setter] fn set_num(&mut self, value: i32) -> PyResult<()> { self.num = value; Ok(()) } } }
In this case, a property num
is defined and available from Python code as self.num
.
Both the #[getter]
and #[setter]
attributes accept one parameter.
If this parameter is specified, it is used as the property name, i.e.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { num: i32, } #[pymethods] impl MyClass { #[getter(number)] fn num(&self) -> PyResult<i32> { Ok(self.num) } #[setter(number)] fn set_num(&mut self, value: i32) -> PyResult<()> { self.num = value; Ok(()) } } }
In this case, the property number
is defined and available from Python code as self.number
.
For simple cases where a member variable is just read and written with no side effects, you can also declare getters and setters in your Rust struct field definition, for example:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { #[pyo3(get, set)] num: i32 } }
Then it is available from Python code as self.num
.
Instance methods
To define a Python compatible method, an impl
block for your struct has to be annotated with the
#[pymethods]
attribute. PyO3 generates Python compatible wrappers for all functions in this
block with some variations, like descriptors, class method static methods, etc.
Since Rust allows any number of impl
blocks, you can easily split methods
between those accessible to Python (and Rust) and those accessible only to Rust.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { num: i32, } #[pymethods] impl MyClass { fn method1(&self) -> PyResult<i32> { Ok(10) } fn set_method(&mut self, value: i32) -> PyResult<()> { self.num = value; Ok(()) } } }
Calls to these methods are protected by the GIL, so both &self
and &mut self
can be used.
The return type must be PyResult<T>
or T
for some T
that implements IntoPy<PyObject>
;
the latter is allowed if the method cannot raise Python exceptions.
A Python
parameter can be specified as part of method signature, in this case the py
argument
gets injected by the method wrapper, e.g.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { num: i32, debug: bool, } #[pymethods] impl MyClass { fn method2(&self, py: Python) -> PyResult<i32> { Ok(10) } } }
From the Python perspective, the method2
in this example does not accept any arguments.
Class methods
To create a class method for a custom class, the method needs to be annotated
with the #[classmethod]
attribute.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; use pyo3::types::PyType; #[pyclass] struct MyClass { num: i32, debug: bool, } #[pymethods] impl MyClass { #[classmethod] fn cls_method(cls: &PyType) -> PyResult<i32> { Ok(10) } } }
Declares a class method callable from Python.
- The first parameter is the type object of the class on which the method is called. This may be the type object of a derived class.
- The first parameter implicitly has type
&PyType
. - For details on
parameter-list
, see the documentation ofMethod arguments
section. - The return type must be
PyResult<T>
orT
for someT
that implementsIntoPy<PyObject>
.
Static methods
To create a static method for a custom class, the method needs to be annotated with the
#[staticmethod]
attribute. The return type must be T
or PyResult<T>
for some T
that implements
IntoPy<PyObject>
.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass { num: i32, debug: bool, } #[pymethods] impl MyClass { #[staticmethod] fn static_method(param1: i32, param2: &str) -> PyResult<i32> { Ok(10) } } }
Class attributes
To create a class attribute (also called class variable), a method without
any arguments can be annotated with the #[classattr]
attribute. The return type must be T
for
some T
that implements IntoPy<PyObject>
.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass {} #[pymethods] impl MyClass { #[classattr] fn my_attribute() -> String { "hello".to_string() } } let gil = Python::acquire_gil(); let py = gil.python(); let my_class = py.get_type::<MyClass>(); pyo3::py_run!(py, my_class, "assert my_class.my_attribute == 'hello'") }
Note that unlike class variables defined in Python code, class attributes defined in Rust cannot be mutated at all:
// Would raise a `TypeError: can't set attributes of built-in/extension type 'MyClass'`
pyo3::py_run!(py, my_class, "my_class.my_attribute = 'foo'")
If the class attribute is defined with const
code only, one can also annotate associated
constants:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; #[pyclass] struct MyClass {} #[pymethods] impl MyClass { #[classattr] const MY_CONST_ATTRIBUTE: &'static str = "foobar"; } }
Callable objects
To specify a custom __call__
method for a custom class, the method needs to be annotated with
the #[call]
attribute. Arguments of the method are specified as for instance methods.
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; use pyo3::types::PyTuple; #[pyclass] struct MyClass { num: i32, debug: bool, } #[pymethods] impl MyClass { #[call] #[args(args="*")] fn __call__(&self, args: &PyTuple) -> PyResult<i32> { println!("MyClass has been called"); Ok(self.num) } } }
Method arguments
By default, PyO3 uses function signatures to determine which arguments are required. Then it scans
the incoming args
and kwargs
parameters. If it can not find all required
parameters, it raises a TypeError
exception. It is possible to override the default behavior
with the #[args(...)]
attribute. This attribute accepts a comma separated list of parameters in
the form of attr_name="default value"
. Each parameter has to match the method parameter by name.
Each parameter can be one of the following types:
"*"
: var arguments separator, each parameter defined after"*"
is a keyword-only parameter. Corresponds to python'sdef meth(*, arg1.., arg2=..)
.args="*"
: "args" is var args, corresponds to Python'sdef meth(*args)
. Type of theargs
parameter has to be&PyTuple
.kwargs="**"
: "kwargs" receives keyword arguments, corresponds to Python'sdef meth(**kwargs)
. The type of thekwargs
parameter has to beOption<&PyDict>
.arg="Value"
: arguments with default value. Corresponds to Python'sdef meth(arg=Value)
. If thearg
argument is defined after var arguments, it is treated as a keyword-only argument. Note thatValue
has to be valid rust code, PyO3 just inserts it into the generated code unmodified.
Example:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; use pyo3::types::{PyDict, PyTuple}; #[pyclass] struct MyClass { num: i32, debug: bool, } #[pymethods] impl MyClass { #[new] #[args(num = "-1", debug = "true")] fn new(num: i32, debug: bool) -> Self { MyClass { num, debug } } #[args( num = "10", debug = "true", py_args = "*", name = "\"Hello\"", py_kwargs = "**" )] fn method( &mut self, num: i32, debug: bool, name: &str, py_args: &PyTuple, py_kwargs: Option<&PyDict>, ) -> PyResult<String> { self.debug = debug; self.num = num; Ok(format!( "py_args={:?}, py_kwargs={:?}, name={}, num={}, debug={}", py_args, py_kwargs, name, self.num, self.debug )) } fn make_change(&mut self, num: i32, debug: bool) -> PyResult<String> { self.num = num; self.debug = debug; Ok(format!("num={}, debug={}", self.num, self.debug)) } } }
N.B. the position of the "*"
argument (if included) controls the system of handling positional and keyword arguments. In Python:
import mymodule
mc = mymodule.MyClass()
print(mc.method(44, False, "World", 666, x=44, y=55))
print(mc.method(num=-1, name="World"))
print(mc.make_change(44, False))
print(mc.make_change(debug=False, num=-1))
Produces output:
py_args=('World', 666), py_kwargs=Some({'x': 44, 'y': 55}), name=Hello, num=44, debug=false
py_args=(), py_kwargs=None, name=World, num=-1, debug=true
num=44, debug=false
num=-1, debug=false
Class customizations
Python's object model defines several protocols for different object behavior, like sequence,
mapping or number protocols. PyO3 defines separate traits for each of them. To provide specific
Python object behavior, you need to implement the specific trait for your struct. Important note,
each protocol implementation block has to be annotated with the #[pyproto]
attribute.
Basic object customization
The PyObjectProtocol
trait provides several basic customizations.
Attribute access
To customize object attribute access, define the following methods:
fn __getattr__(&self, name: FromPyObject) -> PyResult<impl IntoPy<PyObject>>
fn __setattr__(&mut self, name: FromPyObject, value: FromPyObject) -> PyResult<()>
fn __delattr__(&mut self, name: FromPyObject) -> PyResult<()>
Each method corresponds to Python's self.attr
, self.attr = value
and del self.attr
code.
String Conversions
-
fn __repr__(&self) -> PyResult<impl ToPyObject<ObjectType=PyString>>
-
fn __str__(&self) -> PyResult<impl ToPyObject<ObjectType=PyString>>
Possible return types for
__str__
and__repr__
arePyResult<String>
orPyResult<PyString>
. -
fn __bytes__(&self) -> PyResult<PyBytes>
Provides the conversion to
bytes
. -
fn __format__(&self, format_spec: &str) -> PyResult<impl ToPyObject<ObjectType=PyString>>
Special method that is used by the
format()
builtin and thestr.format()
method. Possible return types arePyResult<String>
orPyResult<PyString>
.
Comparison operators
-
fn __richcmp__(&self, other: impl FromPyObject, op: CompareOp) -> PyResult<impl ToPyObject>
Overloads Python comparison operations (
==
,!=
,<
,<=
,>
, and>=
). Theop
argument indicates the comparison operation being performed. The return type will normally bePyResult<bool>
, but any Python object can be returned. Ifother
is not of the type specified in the signature, the generated code will automaticallyreturn NotImplemented
. -
fn __hash__(&self) -> PyResult<impl PrimInt>
Objects that compare equal must have the same hash value. The return type must be
PyResult<T>
whereT
is one of Rust's primitive integer types.
Other methods
-
fn __bool__(&self) -> PyResult<bool>
Determines the "truthyness" of the object.
Garbage Collector Integration
If your type owns references to other Python objects, you will need to
integrate with Python's garbage collector so that the GC is aware of
those references.
To do this, implement the PyGCProtocol
trait for your struct.
It includes two methods __traverse__
and __clear__
.
These correspond to the slots tp_traverse
and tp_clear
in the Python C API.
__traverse__
must call visit.call()
for each reference to another Python object.
__clear__
must clear out any mutable references to other Python objects
(thus breaking reference cycles). Immutable references do not have to be cleared,
as every cycle must contain at least one mutable reference.
Example:
#![allow(unused_variables)] fn main() { extern crate pyo3; use pyo3::prelude::*; use pyo3::PyTraverseError; use pyo3::gc::{PyGCProtocol, PyVisit}; #[pyclass] struct ClassWithGCSupport { obj: Option<PyObject>, } #[pyproto] impl PyGCProtocol for ClassWithGCSupport { fn __traverse__(&self, visit: PyVisit) -> Result<(), PyTraverseError> { if let Some(ref obj) = self.obj { visit.call(obj)? } Ok(()) } fn __clear__(&mut self) { if let Some(obj) = self.obj.take() { // Release reference, this decrements ref counter. let gil = GILGuard::acquire(); let py = gil.python(); py.release(obj); } } } }
Special protocol trait implementations have to be annotated with the #[pyproto]
attribute.
It is also possible to enable GC for custom classes using the gc
parameter of the pyclass
attribute.
i.e. #[pyclass(gc)]
. In that case instances of custom class participate in Python garbage
collection, and it is possible to track them with gc
module methods. When using the gc
parameter,
it is required to implement the PyGCProtocol
trait, failure to do so will result in an error
at compile time:
#[pyclass(gc)]
struct GCTracked {} // Fails because it does not implement PyGCProtocol
Iterator Types
Iterators can be defined using the
PyIterProtocol
trait.
It includes two methods __iter__
and __next__
:
fn __iter__(slf: PyRefMut<Self>) -> PyResult<impl IntoPy<PyObject>>
fn __next__(slf: PyRefMut<Self>) -> PyResult<Option<impl IntoPy<PyObject>>>
Returning Ok(None)
from __next__
indicates that that there are no further items.
These two methods can be take either PyRef<Self>
or PyRefMut<Self>
as their
first argument, so that mutable borrow can be avoided if needed.
Example:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; use pyo3::PyIterProtocol; #[pyclass] struct MyIterator { iter: Box<Iterator<Item = PyObject> + Send>, } #[pyproto] impl PyIterProtocol for MyIterator { fn __iter__(slf: PyRef<Self>) -> PyResult<Py<MyIterator>> { Ok(slf.into()) } fn __next__(mut slf: PyRefMut<Self>) -> PyResult<Option<PyObject>> { Ok(slf.iter.next()) } } }
In many cases you'll have a distinction between the type being iterated over (i.e. the iterable) and the iterator it
provides. In this case, you should implement PyIterProtocol
for both the iterable and the iterator, but the iterable
only needs to support __iter__()
while the iterator must support both __iter__()
and __next__()
. The default
implementations in PyIterProtocol
will ensure that the objects behave correctly in Python. For example:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; use pyo3::PyIterProtocol; #[pyclass] struct Iter { inner: std::vec::IntoIter<usize>, } #[pyproto] impl PyIterProtocol for Iter { fn __iter__(slf: PyRefMut<Self>) -> PyResult<Py<Iter>> { Ok(slf.into()) } fn __next__(mut slf: PyRefMut<Self>) -> PyResult<Option<usize>> { Ok(slf.inner.next()) } } #[pyclass] struct Container { iter: Vec<usize>, } #[pyproto] impl PyIterProtocol for Container { fn __iter__(slf: PyRefMut<Self>) -> PyResult<Py<Iter>> { let iter = Iter { inner: slf.iter.clone().into_iter(), }; PyCell::new(slf.py(), iter).map(Into::into) } } let gil = Python::acquire_gil(); let py = gil.python(); let inst = pyo3::PyCell::new( py, Container { iter: vec![1, 2, 3, 4], }, ) .unwrap(); pyo3::py_run!(py, inst, "assert list(inst) == [1, 2, 3, 4]"); pyo3::py_run!(py, inst, "assert list(iter(iter(inst))) == [1, 2, 3, 4]"); }
For more details on Python's iteration protocols, check out the "Iterator Types" section of the library documentation.
How methods are implemented
Users should be able to define a #[pyclass]
with or without #[pymethods]
, while PyO3 needs a
trait with a function that returns all methods. Since it's impossible to make the code generation in
pyclass dependent on whether there is an impl block, we'd need to implement the trait on
#[pyclass]
and override the implementation in #[pymethods]
, which is to the best of my knowledge
only possible with the specialization feature, which can't be used on stable.
To escape this we use inventory,
which allows us to collect impl
s from arbitrary source code by exploiting some binary trick.
See inventory: how it works and pyo3_derive_backend::py_class
for more details.
Specifically, the following implementation is generated:
#![allow(unused_variables)] fn main() { use pyo3::prelude::*; /// Class for demonstration struct MyClass { num: i32, debug: bool, } impl pyo3::pyclass::PyClassAlloc for MyClass {} unsafe impl pyo3::PyTypeInfo for MyClass { type Type = MyClass; type BaseType = PyAny; type BaseLayout = pyo3::pycell::PyCellBase<PyAny>; type Layout = PyCell<Self>; type Initializer = PyClassInitializer<Self>; type AsRefTarget = PyCell<Self>; const NAME: &'static str = "MyClass"; const MODULE: Option<&'static str> = None; const DESCRIPTION: &'static str = "Class for demonstration"; const FLAGS: usize = 0; #[inline] fn type_object() -> &'static pyo3::ffi::PyTypeObject { use pyo3::type_object::LazyStaticType; static TYPE_OBJECT: LazyStaticType = LazyStaticType::new(); TYPE_OBJECT.get_or_init::<Self>() } } impl pyo3::pyclass::PyClass for MyClass { type Dict = pyo3::pyclass_slots::PyClassDummySlot; type WeakRef = pyo3::pyclass_slots::PyClassDummySlot; type BaseNativeType = PyAny; } impl pyo3::IntoPy<PyObject> for MyClass { fn into_py(self, py: pyo3::Python) -> pyo3::PyObject { pyo3::IntoPy::into_py(pyo3::Py::new(py, self).unwrap(), py) } } pub struct Pyo3MethodsInventoryForMyClass { methods: &'static [pyo3::class::PyMethodDefType], } impl pyo3::class::methods::PyMethodsInventory for Pyo3MethodsInventoryForMyClass { fn new(methods: &'static [pyo3::class::PyMethodDefType]) -> Self { Self { methods } } fn get(&self) -> &'static [pyo3::class::PyMethodDefType] { self.methods } } impl pyo3::class::methods::HasMethodsInventory for MyClass { type Methods = Pyo3MethodsInventoryForMyClass; } pyo3::inventory::collect!(Pyo3MethodsInventoryForMyClass); let gil = Python::acquire_gil(); let py = gil.python(); let cls = py.get_type::<MyClass>(); pyo3::py_run!(py, cls, "assert cls.__name__ == 'MyClass'") }